Browse > Article
http://dx.doi.org/10.12989/smm.2022.9.2.129

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage  

Dang, Ngoc-Loi (Urban Infrastructure Faculty, Mien Tay Construction University)
Pham, Quang-Quang (Department of Ocean Engineering, Pukyong National University)
Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
Publication Information
Structural Monitoring and Maintenance / v.9, no.2, 2022 , pp. 129-155 More about this Journal
Abstract
In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.
Keywords
damage-sensitive; impedance responses; material and geometric properties; prestressed tendon anchorage; PZT interface;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric-based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Hlth. Monit., 28(1), 1-20. https://doi.org/10.1002/stc.2649.   DOI
2 Ren, W.X., Chen, G. and Hu, W.H. (2005), "Empirical formulas to estimate cable tension by cable fundamental frequency", Struct. Eng. Mech. Mater., 20(3), 363-380. https://doi.org/10.12989/sem.2005.20.3.363.   DOI
3 Plastics & Eastomers Selector, https://omnexus.specialchem.com/
4 Hu, W.H., Said, S., Rohrmann, R.G., Cunha, A. and Teng, J. (2017), "Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span", Struct. Hlth. Monit., 17(5), 1073-1094. https://doi.org/10.1177/1475921717735505.   DOI
5 Standards, C. (2009), Design and Construction of Building Components with Fibre-Reinforced Polymers, Mississauga, Ontario, Canada.
6 Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117.   DOI
7 Tian, Y., Zhang, C., Jiang, S., Zhang, J. and Duan, W. (2020), "Noncontact cable force estimation with unmanned aerial vehicle and computer vision", Comput.-Aid. Civil Infrastr. Eng., 36(1), 73-88. https://doi.org/10.1111/mice.12567.   DOI
8 Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018a), "Correlation-based estimation method for cablestayed bridge girder deflection variability under thermal action", J. Perform. Constr. Facil., 32(5), 04018070-1-10. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001212.   DOI
9 Aloui, O., Lin, J. and Rhode-Barbarigos, L. (2019), "A theoretical framework for sensor placement, structural identification and damage detection in tensegrity structures", Smart Mater. Struct., 28(12), 125004-1-11. https://doi.org/10.1088/1361-665X/ab3d21.   DOI
10 Ai, D., Lin, C. and Zhu, H. (2020), "Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures", J. Intel. Mater. Syst. Struct., 32(8), 847-866. https://doi.org/10.1177/1045389X20969916.   DOI
11 Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensor. (Basel), 19(5), 1054. https://doi.org/10.3390/s19051054.   DOI
12 Ferrari, R., Froio, D., Rizzi, E., Gentile, C. and Chatzi, E.N. (2019), "Model updating of a historic concrete bridge by sensitivity- and global optimization-based Latin Hypercube Sampling", Eng. Struct., 179, 139-160. https://doi.org/10.1016/j.engstruct.2018.08.004.   DOI
13 Hamed, E. and Frostig, Y. (2006), "Natural frequencies of bonded and unbonded prestressed beams-prestress force effects", J. Sound Vib., 295(1-2), 28-39. https://doi.org/10.1016/j.jsv.2005.11.032.   DOI
14 Hiba, A.J. and Glisic, B. (2019), "Monitoring of prestressing forces in prestressed concrete structures-An overview", Struct. Control Hlth. Monit., 26(8), e2374-1-27. https://doi.org/10.1002/stc.2374.   DOI
15 Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 15(6), 997-1012. https://doi.org/10.1260/1369-4332.15.6.997.   DOI
16 Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Prob. Eng., 2014, 1-11. https://doi.org/10.1155/2014/784731.   DOI
17 Yao, Y. and Glisic, B. (2015), "Sensing sheets: Optimal arrangement of dense array of sensors for an improved probability of damage detection", Struct. Hlth. Monit., 14(5), 513-531. https://doi.org/10.1177/1475921715599049.   DOI
18 Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018b), "Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge", Measure., 115, 249-257. https://doi.org/10.1016/j.measurement.2017.10.036.   DOI
19 Yang, Y., Chadha, M., Hu, Z., Vega, M.A., Parno, M.D. and Todd, M.D. (2021), "A probabilistic optimal sensor design approach for structural health monitoring using risk-weighted f-divergence", Mech. Syst. Signal Pr., 161. https://doi.org/10.1016/j.ymssp.2021.107920.   DOI
20 Yang, Y., Lim, Y.Y. and Soh, C.K. (2008), "Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment", Smart Mater. Struct., 17(3), 035008-1-14. https://doi.org/10.1088/0964-1726/17/3/035008.   DOI
21 Zhang, S., Shen, R., Wang, Y., De Roeck, G., Lombaert, G. and Dai, K. (2020), "A two-step methodology for cable force identification", J. Sound Vib., 472, 115201-1-16. https://doi.org/10.1016/j.jsv.2020.115201.   DOI
22 Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015), "Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm", Smart Struct. Syst., 16(2), 243-262. https://doi.org/10.12989/sss.2015.16.2.243.   DOI
23 Kim, S.H., Park, S.Y. and Jeon, S.J. (2020), "Long-term characteristics of prestressing force in post-tensioned structures measured using smart strands", Appl. Sci., 10(12), 1-15. https://doi.org/10.3390/app10124084.   DOI
24 Huynh, T.C., Ho, D.D., Dang, N.L. and Kim, J.T. (2019), "Sensitivity of piezoelectric-based smart interfaces to structural damage in bolted connections", Sensor. (Basel), 19(19), 1-22. https://doi.org/10.3390/s19173670.   DOI
25 Hwang, D., Kim, S. and Kim, H.K. (2021), "Long-term damping characteristics of twin cable-stayed bridge under environmental and operational variations", J. Bridge Eng., 26(9), 04021062-1-13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001761.   DOI
26 Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021.   DOI
27 Li, D., Tan, M., Zhang, S. and Ou, J. (2018), "Stress corrosion damage evolution analysis and mechanism identification for prestressed steel strands using acoustic emission technique", Struct. Control Hlth. Monit., 25(8), 1-11. https://doi.org/10.1002/stc.2189.   DOI
28 Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intel. Mater. Syst. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102.   DOI
29 Lu, X., Lim, Y.Y. and Soh, C.K. (2018), "A novel electromechanical impedance-based model for strength development monitoring of cementitious materials", Struct. Hlth. Monit., 17(4), 902-918. https://doi.org/10.1177/1475921717725028.   DOI
30 Wu, J., Li, W. and Feng, Q. (2018), "Electro-mechanical impedance (EMI) based interlayer slide detection using piezoceramic smart aggregates-a feasibility study", Sensor. (Basel), 18(10), 1-14. https://doi.org/10.3390/s18103524.   DOI
31 Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061.   DOI
32 Moustafa, A., Niri, E.D., Farhidzadeh, A. and Salamone, S. (2014), "Corrosion monitoring of post-tensioned concrete structures using fractal analysis of guided ultrasonic waves", Struct. Control Hlth. Monit., 21(3), 438-448. https://doi.org/10.1002/stc.1586.   DOI
33 Asadollahi, P. and Li, J. (2017), "Statistical analysis of modal properties of a cable-stayed bridge through long-term wireless structural health monitoring", J. Bridge Eng., 22(9), 04017051-1-15. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001093.   DOI
34 Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639.   DOI
35 Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Pr., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046.   DOI
36 Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046.   DOI
37 Bachmann, H., Ammann, W.J., Deischl, F., Eisenmann, J., Floegl, I., Hirsch, G.H., ... & Steinbeisser, L. (2012), Vibration Problems iIn Structures: Practical Guidelines, Birkhauser.
38 Cervenka, V. and Ganz, H.R. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038.   DOI
39 Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489.   DOI
40 Na, W.S. (2017), "Distinguishing crack damage from debonding damage of glass fiber reinforced polymer plate using a piezoelectric transducer based nondestructive testing method", Compos. Struct., 159, 517-527. https://doi.org/10.1016/j.compstruct.2016.10.005.   DOI
41 Ni, Y.Q., Xia, H.W., Wong, K.Y. and Ko, J.M. (2012), "In-service condition assessment of bridge deck using long-term monitoring data of strain response", J. Bridge Eng., 17(6), 876-885. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321.   DOI
42 Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Hlth. Monit., 27, e2547. https://doi.org/10.1002/stc.2547.   DOI
43 Tadros, M.K., Omaishin, N.A., Seguirant, S.J. and Gallt, J.G. (2003), Prestress Losses in Pretensioned HighStrength Concrete Bridge Girders, Transportation Research Board.
44 He, L., Lian, J., Ma, B. and Wang, H. (2014), "Optimal multiaxial sensor placement for modal identification of large structures", Struct. Control Hlth. Monit., 21(1), 61-79. https://doi.org/10.1002/stc.1550.   DOI
45 Hou, R., Xia, Y., Xia, Q. and Zhou, X. (2019), "Genetic algorithm based optimal sensor placement for L1-regularized damage detection", Struct. Control Hlth. Monit., 26(1), e2274-1-14. https://doi.org/10.1002/stc.2274.   DOI
46 Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2017), "Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection", Struct. Monit. Mainten., 4(3), 237-253. https://doi.org/10.12989/smm.2017.4.3.237.   DOI
47 Yan, T.H. and Lin, R.M. (2006), "General optimization of sizes or placement for various sensors/actuators in structure testing and control", Smart Mater. Struct., 15(3), 724-736. https://doi.org/10.1088/0964-1726/15/3/008.   DOI
48 Yang, M., Gong, J. and Yang, X. (2020), "Refined calculation of time-dependent prestress losses in prestressed concrete girders", Struct. Infrastr. Eng., 16(10), 1430-1446. https://doi.org/10.1080/15732479.2020.1712438.   DOI
49 Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181.   DOI
50 Yang, Y. and Miao, A. (2010), "Two-dimensional modeling of the effects of external vibration on the PZT impedance signature", Smart Mater. Struct., 19(6), 1-7. https://doi.org/10.1088/0964-1726/19/6/065031.   DOI
51 Kim, J.M., Kim, H.W., Park, Y.H., Yang, I.H. and Kim, Y.S. (2012), "FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon", Adv. Struct. Eng., 15(6), 907-917. https://doi.org/10.1260/1369-4332.15.6.907.   DOI
52 Kim, S.W., Jeon, B.G., Kim, N.S. and Park, J.C. (2013), "Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge", Struct. Hlth. Monit., 12(5-6), 440-456. https://doi.org/10.1177/1475921713500513.   DOI
53 Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intel. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888.   DOI
54 Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107.   DOI
55 Na, W.S. (2018), "Low cost technique for detecting adhesive debonding damage of glass epoxy composite plate using an impedance based non-destructive testing method", Compos. Struct., 189, 99-106. https://doi.org/10.1016/j.compstruct.2018.01.053.   DOI
56 Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst. Measure. Control, 123(4), 659-667. https://doi.org/10.1115/1.1410370.   DOI