• Title/Summary/Keyword: temporary bonding-debonding

Search Result 7, Processing Time 0.028 seconds

Properties and Curing Behaviors of UV Curable Adhesives with Different Coating Thickness in Temporary Bonding and Debonding Process (Temporary Bonding and Debonding 공정용 UV 경화형 접착 소재의 코팅 두께에 따른 물성 및 경화거동)

  • Lee, Seung-Woo;Lee, Tae-Hyung;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.873-879
    • /
    • 2014
  • UV curable adhesives with different acrylic functionalities were synthesized for temporary bonding and debonding process in 3D multi-chip packaging process. The aim is to study various factors which have an influence on UV curing. The properties and curing behaviors were investigated by gel fraction, peel strength, probe tack, and shear adhesion failure temperature. The results show that the properties and curing behaviors are dependent on not only acrylic functionalities of binders but also UV doses and coating thickness.

Large Area Wafer-Level High-Power Electronic Package Using Temporary Bonding and Debonding with Double-Sided Thermal Release Tape (양면 열박리 테이프 기반 임시 접합 공정을 이용한 대면적 웨이퍼 레벨 고출력 전자패키지)

  • Hwang, Yong-Sik;Kang, Il-Suk;Lee, Ga-Won
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-40
    • /
    • 2022
  • High-power devices, such as LEDs and radars, inevitably generate a large amount of heat, which is the main cause of shortening lifespan, deterioration in performance, and failure of electronic devices. The embedded IC process can be a solution; however, when applied to large-area substrates (larger than 8 in), there is a limit owing to the difficulty in the process after wafer thinning. In this study, an 8-in wafer-level high-power electronic package based on the embedded IC process was implemented with temporary bonding and debonding technology using double-sided thermal release tape. Good heat-dissipation characteristics were demonstrated both theoretically and experimentally. These findings will advance the commercialization of high-power electronic packaging.

Recent Trends of Light Induced Bonding-Debonding Adhesives (광을 이용한 해체용 접착소재의 최근 동향)

  • Jeong, Jongkoo;Cho, Seong-keun;Lee, Jae Heung
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 2021
  • A variety of efforts are attempted to make the world sustainable in fabrication industries worldwide. To achieve the goals, a new design concept for products is one of crucial factors to be able to dismantle them after use in easy and simple ways. New debonding technologies have been developed in recent years for the recycle and/or repair of bonded structures, where the bonds are broken without the damage of the components and make recycling easier. Some representative technologies of controlled delamination materials (CDM) are reviewed with an emphasis on light induced debonding of adhesives. We also describe current applications of light induced CDMs as temporary bondable films in semiconductor and display industries.

Wafer TTV Measurement and Variable Effect Analysis According to Settling Time (Settling Time에 따른 웨이퍼 TTV 측정 및 변수 영향 분석)

  • Hyeong Won Kim;Anmok Jeong;Taeho Kim;Hak Jun Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.8-13
    • /
    • 2023
  • High bandwidth memory a core technology of the future memory semiconductor industry, is attracting attention. Temporary bonding and debonding process technology, which plays an important role in high bandwidth memory process technology, is also being studied. In this process, total thickness variation is a major factor determining wafer performance. In this study, the reliability of the equipment measuring total thickness variation is identified, and the servo motor settling, and wafer total thickness variation measurement accuracy are analyzed. As for the experimental variables, vacuum, acceleration time, and speed are changed to find the most efficient value by comparing the stabilization time. The smaller the vacuum and the larger the radius, the longer the settling time. If the radius is small, high-speed rotation performance is good, and if the radius is large, low-speed rotation performance is good. In the future, we plan to conduct an experiment to measure the entire of the wafer.

  • PDF

Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement (300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계)

  • An-Mok Jeong;Hak-Jun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.88-93
    • /
    • 2023
  • As the demand for High Bandwidth Memory (HBM) increases and the handling capability of larger wafers expands, ensuring reliable Total Thickness Variation (TTV) measurement for stacked wafers becomes essential. This study presents the design of a measurement module capable of measuring TTV across the entire area of a 300mm wafer, along with estimating potential mechanical measurement errors. The module enables full-area measurement by utilizing a center chuck and lift pin for wafer support. Modal analysis verifies the structural stability of the module, confirming that both the driving and measuring parts were designed with stiffness exceeding 100 Hz. The mechanical measurement error of the designed module was estimated, resulting in a predicted measurement error of 1.34 nm when measuring the thickness of a bonding wafer with a thickness of 1,500 ㎛.