• Title/Summary/Keyword: temporal episodic memory

Search Result 9, Processing Time 0.024 seconds

Time Perception and Memory in Mild Cognitive Impairment and Alzheimer's Disease: A Preliminary Study

  • Sung-Ho Woo;Jarang Hahm;Jeong-Sug Kyong;Hang-Rai Kim;Kwang Ki Kim
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.148-157
    • /
    • 2023
  • Background and Purpose: Episodic memory is a system that receives and stores information about temporally dated episodes and their interrelations. Our study aimed to investigate the relevance of episodic memory to time perception, with a specific focus on simultaneity/order judgment. Methods: Experiment 1 employed the simultaneity judgment task to discern differences in time perception between patients with mild cognitive impairment or dementia, and age-matched normals. A mathematical analysis capable of estimating subjects' time processing was utilized to identify the sensory and decisional components of temporal order and simultaneity judgment. Experiment 2 examined how differences in temporal perception relate to performance in temporal order memory, in which time delays play a critical role. Results: The temporal decision windows for both temporal order and simultaneity judgments exhibited marginal differences between patients with episodic memory impairment, and their healthy counterparts (p = 0.15, t(22) = 1.34). These temporal decision windows may be linked to the temporal separation of events in episodic memory (Pearson's ρ = -0.53, p = 0.05). Conclusions: Based on our findings, the frequency of visual events accumulated and encoded in the working memory system in the patients' and normal group appears to be approximately (5.7 and 11.2) Hz, respectively. According to the internal clock model, a lower frequency of event pulses tends to result in underestimation of event duration, which phenomenon might be linked to the observed time distortions in patients with dementia.

Declines in the Components of Episodic Memory by Normal Aging Focusing on Object, Spatial Location, Temporal Order Memory (정상노화 과정에 따른 일화기억 하위요소의 변화양상에 관한 연구 : 사물, 공간위치, 시간순서 기억을 중심으로)

  • Heo, Seo-Yoon;Park, Jin-Hyuck
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.9 no.2
    • /
    • pp.13-22
    • /
    • 2019
  • Objective : The purpose of this technical research is to determine decline of episodic memory by normal aging focucing on object, spatial location, and temporal order memory. Methods : We allocated seventy-seven of healthy adults from twenty to eighty years old, and performed computer-based cognitive tasks which were consisted of the object, spatial location, and temporal order memory. We used OpenSesame(OpenSesame Inc, OR), put ten pictures people normally see in their daily life, and evaluated those aspects through asking the objects types, object spatial locations, and picture temporal orders from 10 sheets of the picture. Results : Object and spatial location memory were not affected by normal aging whereas, temporal order memory significantly decreased with normal aging. Specifically, temporal order memory for in their age of forty was significantly decreased compared with their age of twenty and object memory at their age of eighty was relatively high compared to spatial location and temporal order memory. We found out that temporal order memory worse fastest and object memory lasted longest. Conclusion : In this study, we confirmed characteristics of declines of episodic memory consisting of object, spatial location, and temporal order memory. Notably, we could specifically identify declines of spatial location and temporal order memory with normal aging previous studies investigated on a limited basis using conventional neuropsychological assessments. These findings would be helpful to screen impairment in episodic memory by normal aging and provide an evidence that cognitive intervention for healthy older adults needs to include spatial and temporal aspect of memory.

The Biological Base of Learing and Memory(I):A Neuropsychological Review (학습과 기억의 생물학적 기초(I):신경심리학적 개관)

  • MunsooKim
    • Korean Journal of Cognitive Science
    • /
    • v.7 no.3
    • /
    • pp.7-36
    • /
    • 1996
  • Recebt neuropsychological studies on neurobiological bases of learning and memory in humans are reviewed. At present, cognitive psychologists belive that memory is not a unitary system. But copmosed of several independent subsystems. Adoption this perspective,this paper summarized findings regarding what kinds of memory discorders result from lesions of which brain areas and which brain areas are activated by what kind of learning/memory tasks. Short-term memory seems to involve widespread areas around the boundaries among the parietal,occipital,and temporal lobes,depending on the type of the type of the tasks and the way of presentation of the stimuli. Implicit memory,a subsystem of long-term memory,is not a unitary system itself. Thus,brain areas involved in implicit memory tasks used. It is well-known that medial temporal lobe is necessary for formation(i,e.,consolidation)of explicit memory,another subsystem of long-term memory. Storage and/or retrieval of episodic and semantic memory involve temporal neocortex. Perfromtal cortex seemas to be involved in several aspects of memory such as short term memory and retrieval of espisodic and semantic memory. Finally, a popular view on the locus of long-term memory storage is described.

  • PDF

Interactivity within large-scale brain network recruited for retrieval of temporally organized events (시간적 일화기억인출에 관여하는 뇌기능연결성 연구)

  • Nah, Yoonjin;Lee, Jonghyun;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.3
    • /
    • pp.161-192
    • /
    • 2018
  • Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.

Functional Mapping of the Neural Basis for the Encoding and Retrieval of Human Episodic Memory Using ${H_2}^{15}O$ PET ({H_2}^{15}O$ PET을 이용한 정상인의 삽화기억 부호화 및 인출 중추 뇌기능지도화)

  • Lee, Jae-Sung;Nam, Hyun-Woo;Lee, Dong-Soo;Lee, Sang-Kun;Jang, Myoung-Jin;Ahn, Ji-Young;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.10-21
    • /
    • 2000
  • Purpose: Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using ${H_2}^{15}O$ PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Materials and Methods: Four repeated ${H_2}^{15}O$ PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Results: Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal area, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memory. Conclusion: We could localize the neural basis of the encoding and retrieval of episodic memory using ${H_2}^{15}O$ PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  • PDF

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks (일화기억을 구성하는 맥락 요소에 대한 탐구: 시공간적 맥락과 구분되는 사회적, 행동적, 의도적 맥락의 내측두엽-대뇌피질 네트워크 특징을 중심으로)

  • Park, Jonghyun;Nah, Yoonjin;Yu, Sumin;Lee, Seung-Koo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.2
    • /
    • pp.109-133
    • /
    • 2022
  • Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.

An Empirical Study of Temporal Navigation System for Time-based Contents: Focused on Digital TV Systems (시간 기반 컨텐츠를 위한 항해 시스템에 대한 실증적 연구 : 디지털 TV를 중심으로)

  • 김현호;김진우;박경욱;박준아
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.944-954
    • /
    • 2003
  • People are experiencing severe problems in temporal navigation as time-based contents and platforms become more popular Relatively limited research, however, has been conducted on temporal navigation compared to that on spatial navigation. This research aims to identify efficient temporal navigation aids for time-based contents. It proposes Time Navigator, a new temporal navigation system based on the episodic indexing theory, and evaluates its efficiency through two experiments with a computer-based simulator for digital TV The video contents of digital TV was focused on because it is one of the most representative time-based contents and platforms. Our results indicate that Time Navigator helps people navigate time -based contents more effectively. Its effects increase as the contents include more narratives.

The effect of semantic categorization of episodic memory on encoding of subordinate details: An fMRI study (일화 기억의 의미적 범주화가 세부 기억의 부호화에 미치는 영향에 대한 자기공명영상 분석 연구)

  • Yi, Darren Sehjung;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.193-221
    • /
    • 2017
  • Grouping episodes into semantically related categories is necessary for better mnemonic structure. However, the effect of grouping on memory of subordinate details was not clearly understood. In an fMRI study, we tested whether attending superordinate during semantic association disrupts or enhances subordinate episodic details. In each cycle of the experiment, five cue words were presented sequentially with two related detail words placed underneath for each cue. Participants were asked whether they could imagine a category that includes the previously shown cue words in each cycle, and their confidence on retrieval was rated. Participants were asked to perform cued recall tests on presented detail words after the session. Behavioral data showed that reaction times for categorization tasks decreased and confidence levels increased in the third trial of each cycle, thus this trial was considered to be an important insight where a semantic category was believed to be successfully established. Critically, the accuracy of recalling detail words presented immediately prior to third trials was lower than those of followed trials, indicating that subordinate details were disrupted during categorization. General linear model analysis of the trial immediately prior to the completion of categorization, specifically the second trial, revealed significant activation in the temporal gyrus and inferior frontal gyrus, areas of semantic memory networks. Representative Similarity Analysis revealed that the activation patterns of the third trials were more consistent than those of the second trials in the temporal gyrus, inferior frontal gyrus, and hippocampus. Our research demonstrates that semantic grouping can cause memories of subordinate details to fade, suggesting that semantic retrieval during categorization affects the quality of related episodic memory.

Question Answering Optimization via Temporal Representation and Data Augmentation of Dynamic Memory Networks (동적 메모리 네트워크의 시간 표현과 데이터 확장을 통한 질의응답 최적화)

  • Han, Dong-Sig;Lee, Chung-Yeon;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • The research area for solving question answering (QA) problems using artificial intelligence models is in a methodological transition period, and one such architecture, the dynamic memory network (DMN), is drawing attention for two key attributes: its attention mechanism defined by neural network operations and its modular architecture imitating cognition processes during QA of human. In this paper, we increased accuracy of the inferred answers, by adapting an automatic data augmentation method for lacking amount of training data, and by improving the ability of time perception. The experimental results showed that in the 1K-bAbI tasks, the modified DMN achieves 89.21% accuracy and passes twelve tasks which is 13.58% higher with passing four more tasks, as compared with one implementation of DMN. Additionally, DMN's word embedding vectors form strong clusters after training. Moreover, the number of episodic passes and that of supporting facts shows direct correlation, which affects the performance significantly.