Park, Jonghyun
(Department of Psychology, Yonsei University)
Nah, Yoonjin (Department of Psychology, Yonsei University) Yu, Sumin (Department of Psychology, Yonsei University) Lee, Seung-Koo (Department of Radiology, Yonsei University College of Medicine) Han, Sanghoon (Department of Psychology, Yonsei University) |
1 | Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8(2), 203-220. https://doi.org/10.3758/bf03196157. DOI |
2 | Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing. PLoS ONE, 6(9), e25031. https://doi.org/10.1371/journal.pone.0025031. DOI |
3 | Staresina, B. P., & Davachi, L. (2008). Selective and Shared Contributions of the Hippocampus and Perirhinal Cortex to Episodic Item and Associative Encoding. Journal of Cognitive Neuroscience, 20(8), 1478-1489. https://doi.org/10.1162/jocn.2008.20104. DOI |
4 | Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978. DOI |
5 | Wang, S. F., Ritchey, M., Libby, L. A., & Ranganath, C. (2016). Functional connectivity based parcellation of the human medial temporal lobe. Neurobiology of Learning and Memory, 134, 123-134. https://doi.org/10.1016/j.nlm.2016.01.005. DOI |
6 | Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509. https://doi.org/10.1093/scan/nsaa057. DOI |
7 | Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. https://doi.org/10.1016/j.neuroimage.2006.01.015. DOI |
8 | Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), 497. |
9 | Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: the role of prediction and context. Trends in Cognitive Sciences, 19(2), 92-99. https://doi.org/10.1016/j.tics.2014.12.004. DOI |
10 | Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81-88. https://doi.org/10.1016/j.tics.2012.12.007. DOI |
11 | Forwood, S., Winters, B., & Bussey, T. (2005). Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus, 15(3), 347-355. https://doi.org/10.1002/hipo.20059. DOI |
12 | Hart, G. (1996). The five w's: An old tool for the new task of task analysis. Technical communication, 43(2), 139-145. |
13 | Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356. https://doi.org/10.1101/lm.919109. DOI |
14 | Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16(9), 795-808. https://doi.org/10.1002/hipo.20205. DOI |
15 | Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage, 59(3), 2636-2643. https://doi.org/10.1016/j.neuroimage.2011.08.076. DOI |
16 | Nadel, L., Hoscheidt, S., & Ryan, L. R. (2013). Spatial Cognition and the Hippocampus: The Anterior- Posterior Axis. Journal of Cognitive Neuroscience, 25(1), 22-28. https://doi.org/10.1162/jocn_a_00313. DOI |
17 | Olman, C. A., Davachi, L., & Inati, S. (2009). Distortion and Signal Loss in Medial Temporal Lobe. PLoS ONE, 4(12), e8160. https://doi.org/10.1371/journal.pone.0008160. DOI |
18 | Rugg, M. D., Vilberg, K. L., Mattson, J. T., Yu, S. S., Johnson, J. D., & Suzuki, M. (2012). Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia, 50(13), 3070-3079. https://doi.org/10.1016/j.neuropsychologia.2012.06.004. DOI |
19 | Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012). Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition-Dependent Large-Scale Functional Connectivity. PLoS Computational Biology, 8(3), e1002441. https://doi.org/10.1371/journal.pcbi.1002441. DOI |
20 | Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230-240. https://doi.org/10.1016/j.tics.2013.03.005. DOI |
21 | Schedlbauer, A. M., Copara, M. S., Watrous, A. J., & Ekstrom, A. D. (2014). Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Scientific Reports, 4(1). https://doi.org/10.1038/srep06431. DOI |
22 | Shamay-Tsoory, S. G. (2010). The Neural Bases for Empathy. The Neuroscientist, 17(1), 18-24. https://doi.org/10.1177/1073858410379268. DOI |
23 | Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637-648. https://doi.org/10.1038/nrn1178. DOI |
24 | Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364-375. https://doi.org/10.1038/s41583-019-0150-4. DOI |
25 | Kvavilashvili, L. (1987). Remembering intention as a distinct form of memory. British Journal of Psychology, 78(4), 507-518. https://doi.org/10.1111/j.2044-8295.1987.tb02265.x. DOI |
26 | Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi : An Open Source Software for Exploring and Manipulating Networks. In Third International ICWSM Conference (pp. 361-362). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154. |
27 | Rissman, J., Gazzaley, A., & D'Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage, 23(2), 752-763. https://doi.org/10.1016/j.neuroimage.2004.06.035. DOI |
28 | Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16(9), 716-729. https://doi.org/10.1002/hipo.20208. DOI |
29 | Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233-1239. https://doi.org/10.1016/s1053-8119(03)00169-1. DOI |
30 | Eskenazi, T., Grosjean, M., Humphreys, G. W., & Knoblich, G. (2009). The role of motor simulation in action perception: a neuropsychological case study. Psychological Research Psychologische Forschung, 73(4), 477-485. https://doi.org/10.1007/s00426-009-0231-5. DOI |
31 | Dobbins, I. G., & Han, S. (2006). Cue- versus Probe-dependent Prefrontal Cortex Activity during Contextual Remembering. Journal of Cognitive Neuroscience, 18(9), 1439-1452. https://doi.org/10.1162/jocn.2006.18.9.1439. DOI |
32 | Aminoff, E., Gronau, N., & Bar, M. (2006). The Parahippocampal Cortex Mediates Spatial and Nonspatial Associations. Cerebral Cortex, 17(7), 1493-1503. https://doi.org/10.1093/cercor/bhl078. DOI |
33 | Burgess, N., Maguire, E. A., Spiers, H. J., & O'Keefe, J. (2001). A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events. NeuroImage, 14(2), 439-453. https://doi.org/10.1006/nimg.2001.0806. DOI |
34 | Colombo, M., Fernandez, T., Nakamura, K., & Gross, C. G. (1998). Functional Differentiation Along the Anterior-Posterior Axis of the Hippocampus in Monkeys. Journal of Neurophysiology, 80(2), 1002-1005. https://doi.org/10.1152/jn.1998.80.2.1002. DOI |
35 | Duarte, A., Henson, R. N., Knight, R. T., Emery, T., & Graham, K. S. (2010). Orbito-frontal Cortex is Necessary for Temporal Context Memory. Journal of Cognitive Neuroscience, 22(8), 1819-1831. https://doi.org/10.1162/jocn.2009.21316. DOI |
36 | Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P., & Villringer, A. (2003). An fMRI study of simple ethical decision-making. NeuroReport, 14(9), 1215-1219. https://doi.org/10.1097/00001756-200307010-00005. DOI |
37 | Feinberg, L. M., Allen, T. A., Ly, D., & Fortin, N. J. (2012). Recognition memory for social and non-social odors: Differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex. Neurobiology of Learning and Memory, 97(1), 7-16. https://doi.org/10.1016/j.nlm.2011.08.008. DOI |
38 | Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936-2952. https://doi.org/10.1002/hbm.20720. DOI |
39 | Grezes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40(2), 212-222. https://doi.org/10.1016/s0028-3932(01)00089-6. DOI |
40 | Hsieh, L. T., Gruber, M., Jenkins, L., & Ranganath, C. (2014). Hippocampal Activity Patterns Carry Information about Objects in Temporal Context. Neuron, 81(5), 1165-1178. https://doi.org/10.1016/j.neuron.2014.01.015. DOI |
41 | Kirchhoff, B. A., Wagner, A. D., Maril, A., & Stern, C. E. (2000). Prefrontal-Temporal Circuitry for Episodic Encoding and Subsequent Memory. The Journal of Neuroscience, 20(16), 6173-6180. https://doi.org/10.1523/jneurosci.20-16-06173.2000. DOI |
42 | Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908-911. https://doi.org/10.1038/nature05631. DOI |
43 | Lee, D. (2008). Game theory and neural basis of social decision making. Nature Neuroscience, 11(4), 404-409. https://doi.org/10.1038/nn2065. DOI |
44 | Yan, C. G., & Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in System Neuroscience. https://doi.org/10.3389/fnsys.2010.00013. DOI |
45 | Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126-135. https://doi.org/10.1016/j.tics.2006.12.003. DOI |
46 | Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36(4), 630-633. https://doi.org/10.3758/bf03206543. DOI |
47 | Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The Medial Temporal Lobe. Annual Review of Neuroscience, 27(1), 279-306. https://doi.org/10.1146/annurev.neuro.27.070203.144130. DOI |
48 | Zhang, W., van Ast, V. A., Klumpers, F., Roelofs, K., & Hermans, E. J. (2018). Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions. Journal of Cognitive Neuroscience, 30(4), 579-593. https://doi.org/10.1162/jocn_a_01218. DOI |
49 | Vrticka, P., Andersson, F., Sander, D., & Vuilleumier, P. (2009). Memory for friends or foes: The social context of past encounters with faces modulates their subsequent neural traces in the brain. Social Neuroscience, 4(5), 384-401. https://doi.org/10.1080/17470910902941793. DOI |