Browse > Article
http://dx.doi.org/10.19066/cogsci.2022.33.2.002

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks  

Park, Jonghyun (Department of Psychology, Yonsei University)
Nah, Yoonjin (Department of Psychology, Yonsei University)
Yu, Sumin (Department of Psychology, Yonsei University)
Lee, Seung-Koo (Department of Radiology, Yonsei University College of Medicine)
Han, Sanghoon (Department of Psychology, Yonsei University)
Publication Information
Korean Journal of Cognitive Science / v.33, no.2, 2022 , pp. 109-133 More about this Journal
Abstract
Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.
Keywords
Contextual Memory; Hippocampus; High-resolution fMRI; Functional Connectivity Pattern Analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8(2), 203-220. https://doi.org/10.3758/bf03196157.   DOI
2 Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing. PLoS ONE, 6(9), e25031. https://doi.org/10.1371/journal.pone.0025031.   DOI
3 Staresina, B. P., & Davachi, L. (2008). Selective and Shared Contributions of the Hippocampus and Perirhinal Cortex to Episodic Item and Associative Encoding. Journal of Cognitive Neuroscience, 20(8), 1478-1489. https://doi.org/10.1162/jocn.2008.20104.   DOI
4 Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978.   DOI
5 Wang, S. F., Ritchey, M., Libby, L. A., & Ranganath, C. (2016). Functional connectivity based parcellation of the human medial temporal lobe. Neurobiology of Learning and Memory, 134, 123-134. https://doi.org/10.1016/j.nlm.2016.01.005.   DOI
6 Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509. https://doi.org/10.1093/scan/nsaa057.   DOI
7 Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116-1128. https://doi.org/10.1016/j.neuroimage.2006.01.015.   DOI
8 Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), 497.
9 Davachi, L., & DuBrow, S. (2015). How the hippocampus preserves order: the role of prediction and context. Trends in Cognitive Sciences, 19(2), 92-99. https://doi.org/10.1016/j.tics.2014.12.004.   DOI
10 Eichenbaum, H. (2013). Memory on time. Trends in Cognitive Sciences, 17(2), 81-88. https://doi.org/10.1016/j.tics.2012.12.007.   DOI
11 Forwood, S., Winters, B., & Bussey, T. (2005). Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus, 15(3), 347-355. https://doi.org/10.1002/hipo.20059.   DOI
12 Hart, G. (1996). The five w's: An old tool for the new task of task analysis. Technical communication, 43(2), 139-145.
13 Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356. https://doi.org/10.1101/lm.919109.   DOI
14 Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16(9), 795-808. https://doi.org/10.1002/hipo.20205.   DOI
15 Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage, 59(3), 2636-2643. https://doi.org/10.1016/j.neuroimage.2011.08.076.   DOI
16 Nadel, L., Hoscheidt, S., & Ryan, L. R. (2013). Spatial Cognition and the Hippocampus: The Anterior- Posterior Axis. Journal of Cognitive Neuroscience, 25(1), 22-28. https://doi.org/10.1162/jocn_a_00313.   DOI
17 Olman, C. A., Davachi, L., & Inati, S. (2009). Distortion and Signal Loss in Medial Temporal Lobe. PLoS ONE, 4(12), e8160. https://doi.org/10.1371/journal.pone.0008160.   DOI
18 Rugg, M. D., Vilberg, K. L., Mattson, J. T., Yu, S. S., Johnson, J. D., & Suzuki, M. (2012). Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia, 50(13), 3070-3079. https://doi.org/10.1016/j.neuropsychologia.2012.06.004.   DOI
19 Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012). Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition-Dependent Large-Scale Functional Connectivity. PLoS Computational Biology, 8(3), e1002441. https://doi.org/10.1371/journal.pcbi.1002441.   DOI
20 Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences, 17(5), 230-240. https://doi.org/10.1016/j.tics.2013.03.005.   DOI
21 Schedlbauer, A. M., Copara, M. S., Watrous, A. J., & Ekstrom, A. D. (2014). Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Scientific Reports, 4(1). https://doi.org/10.1038/srep06431.   DOI
22 Shamay-Tsoory, S. G. (2010). The Neural Bases for Empathy. The Neuroscientist, 17(1), 18-24. https://doi.org/10.1177/1073858410379268.   DOI
23 Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637-648. https://doi.org/10.1038/nrn1178.   DOI
24 Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364-375. https://doi.org/10.1038/s41583-019-0150-4.   DOI
25 Kvavilashvili, L. (1987). Remembering intention as a distinct form of memory. British Journal of Psychology, 78(4), 507-518. https://doi.org/10.1111/j.2044-8295.1987.tb02265.x.   DOI
26 Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi : An Open Source Software for Exploring and Manipulating Networks. In Third International ICWSM Conference (pp. 361-362). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.
27 Rissman, J., Gazzaley, A., & D'Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage, 23(2), 752-763. https://doi.org/10.1016/j.neuroimage.2004.06.035.   DOI
28 Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16(9), 716-729. https://doi.org/10.1002/hipo.20208.   DOI
29 Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233-1239. https://doi.org/10.1016/s1053-8119(03)00169-1.   DOI
30 Eskenazi, T., Grosjean, M., Humphreys, G. W., & Knoblich, G. (2009). The role of motor simulation in action perception: a neuropsychological case study. Psychological Research Psychologische Forschung, 73(4), 477-485. https://doi.org/10.1007/s00426-009-0231-5.   DOI
31 Dobbins, I. G., & Han, S. (2006). Cue- versus Probe-dependent Prefrontal Cortex Activity during Contextual Remembering. Journal of Cognitive Neuroscience, 18(9), 1439-1452. https://doi.org/10.1162/jocn.2006.18.9.1439.   DOI
32 Aminoff, E., Gronau, N., & Bar, M. (2006). The Parahippocampal Cortex Mediates Spatial and Nonspatial Associations. Cerebral Cortex, 17(7), 1493-1503. https://doi.org/10.1093/cercor/bhl078.   DOI
33 Burgess, N., Maguire, E. A., Spiers, H. J., & O'Keefe, J. (2001). A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events. NeuroImage, 14(2), 439-453. https://doi.org/10.1006/nimg.2001.0806.   DOI
34 Colombo, M., Fernandez, T., Nakamura, K., & Gross, C. G. (1998). Functional Differentiation Along the Anterior-Posterior Axis of the Hippocampus in Monkeys. Journal of Neurophysiology, 80(2), 1002-1005. https://doi.org/10.1152/jn.1998.80.2.1002.   DOI
35 Duarte, A., Henson, R. N., Knight, R. T., Emery, T., & Graham, K. S. (2010). Orbito-frontal Cortex is Necessary for Temporal Context Memory. Journal of Cognitive Neuroscience, 22(8), 1819-1831. https://doi.org/10.1162/jocn.2009.21316.   DOI
36 Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P., & Villringer, A. (2003). An fMRI study of simple ethical decision-making. NeuroReport, 14(9), 1215-1219. https://doi.org/10.1097/00001756-200307010-00005.   DOI
37 Feinberg, L. M., Allen, T. A., Ly, D., & Fortin, N. J. (2012). Recognition memory for social and non-social odors: Differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex. Neurobiology of Learning and Memory, 97(1), 7-16. https://doi.org/10.1016/j.nlm.2011.08.008.   DOI
38 Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936-2952. https://doi.org/10.1002/hbm.20720.   DOI
39 Grezes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40(2), 212-222. https://doi.org/10.1016/s0028-3932(01)00089-6.   DOI
40 Hsieh, L. T., Gruber, M., Jenkins, L., & Ranganath, C. (2014). Hippocampal Activity Patterns Carry Information about Objects in Temporal Context. Neuron, 81(5), 1165-1178. https://doi.org/10.1016/j.neuron.2014.01.015.   DOI
41 Kirchhoff, B. A., Wagner, A. D., Maril, A., & Stern, C. E. (2000). Prefrontal-Temporal Circuitry for Episodic Encoding and Subsequent Memory. The Journal of Neuroscience, 20(16), 6173-6180. https://doi.org/10.1523/jneurosci.20-16-06173.2000.   DOI
42 Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908-911. https://doi.org/10.1038/nature05631.   DOI
43 Lee, D. (2008). Game theory and neural basis of social decision making. Nature Neuroscience, 11(4), 404-409. https://doi.org/10.1038/nn2065.   DOI
44 Yan, C. G., & Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in System Neuroscience. https://doi.org/10.3389/fnsys.2010.00013.   DOI
45 Mayes, A., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126-135. https://doi.org/10.1016/j.tics.2006.12.003.   DOI
46 Minear, M., & Park, D. C. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36(4), 630-633. https://doi.org/10.3758/bf03206543.   DOI
47 Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The Medial Temporal Lobe. Annual Review of Neuroscience, 27(1), 279-306. https://doi.org/10.1146/annurev.neuro.27.070203.144130.   DOI
48 Zhang, W., van Ast, V. A., Klumpers, F., Roelofs, K., & Hermans, E. J. (2018). Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions. Journal of Cognitive Neuroscience, 30(4), 579-593. https://doi.org/10.1162/jocn_a_01218.   DOI
49 Vrticka, P., Andersson, F., Sander, D., & Vuilleumier, P. (2009). Memory for friends or foes: The social context of past encounters with faces modulates their subsequent neural traces in the brain. Social Neuroscience, 4(5), 384-401. https://doi.org/10.1080/17470910902941793.   DOI