DOI QR코드

DOI QR Code

The effect of semantic categorization of episodic memory on encoding of subordinate details: An fMRI study

일화 기억의 의미적 범주화가 세부 기억의 부호화에 미치는 영향에 대한 자기공명영상 분석 연구

  • Received : 2017.09.24
  • Accepted : 2017.10.17
  • Published : 2017.12.30

Abstract

Grouping episodes into semantically related categories is necessary for better mnemonic structure. However, the effect of grouping on memory of subordinate details was not clearly understood. In an fMRI study, we tested whether attending superordinate during semantic association disrupts or enhances subordinate episodic details. In each cycle of the experiment, five cue words were presented sequentially with two related detail words placed underneath for each cue. Participants were asked whether they could imagine a category that includes the previously shown cue words in each cycle, and their confidence on retrieval was rated. Participants were asked to perform cued recall tests on presented detail words after the session. Behavioral data showed that reaction times for categorization tasks decreased and confidence levels increased in the third trial of each cycle, thus this trial was considered to be an important insight where a semantic category was believed to be successfully established. Critically, the accuracy of recalling detail words presented immediately prior to third trials was lower than those of followed trials, indicating that subordinate details were disrupted during categorization. General linear model analysis of the trial immediately prior to the completion of categorization, specifically the second trial, revealed significant activation in the temporal gyrus and inferior frontal gyrus, areas of semantic memory networks. Representative Similarity Analysis revealed that the activation patterns of the third trials were more consistent than those of the second trials in the temporal gyrus, inferior frontal gyrus, and hippocampus. Our research demonstrates that semantic grouping can cause memories of subordinate details to fade, suggesting that semantic retrieval during categorization affects the quality of related episodic memory.

의미적 연관성을 지닌 일화들의 범주화는 기억을 더 효과적으로 구조화하는데 도움이 된다. 그러나 해당 일화의 하위 세부 기억들에 대한 상기한 범주화의 영향은 아직 명확하게 알려져 있지 않다. 본 연구에서는 fMRI 실험을 통해 의미적 범주화가 이루어지는 동안 상위의 일화 기억에 주의를 기울이는 것이 하위 세부기억의 생성을 방해하는지, 혹은 강화하는지 실험하였다. 참가자들에게 한 사이클 내에서 각각 2개의 하위단어를 가지고 있는 5개의 목표 단어들이 순서대로 제시되었는데, 참가자들은 해당 사이클 내에서 제시된 목표 단어들을 포함할 수 있는 범주를 떠올릴 수 있는지 응답한 후 그 범주에 대한 주관적 확신도를 평정하였다. fMRI 내 과정이 끝난 후 참가자들은 스캐너 밖으로 이동하여 제시되었던 단서 단어의 하위 단어들에 대한 단서 회상과제를 수행하였다. 행동 실험 결과 매 사이클의 세 번째 시행에서 범주화 과제의 반응속도가 감소하였고 동시에 주관적 확신도 수준이 증가하였는데, 이는 해당 시행에서 의미적 범주화가 완성되었음을 의미한다. 주목할 점은 세 번째 시행 바로 직전에 제시되었던 하위 단어들의 회상 정확도가 그 다음 시행 직전에 제시된 단어들에 비해 유의미하게 낮았다는 점이며 이는 범주화가 완성될 때 일화 기억의 하위 세부 요소들이 손상되었음을 의미한다. 일반선형모델을 통한 분석 결과 의미적 범주화가 완성되기 직전의 시행에서 의미적 기억망과 관련이 있는 것으로 알려져 있는 측두회와 하전두회에서 유의미한 활성화가 나타났다. 또한 패턴 유사성 분석 결과 또한 측두회, 하전두회, 해마 영역에서 세 번째 시행 간의 활성화 패턴이 두 번째 시행의 활성화 패턴에 비해 더 일관적인 것으로 나타났다. 본 연구는 의미적 범주화가 하위 세부 일화 기억을 방해할 수 있다는 것을 보여주며, 이러한 범주화가 진행되는 동안 일어나는 의미적 인출 경험이 관련된 일화 기억의 흔적에 질적인 영향을 미칠 수 있음을 시사한다.

Keywords

References

  1. Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409-426. https://doi.org/10.1037/0033-295X.98.3.409
  2. Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39(2), 216-233. https://doi.org/10.1006/jmps.1995.1021
  3. Badre, D., & Wagner, A. D. (2002). Semantic Retrieval, Mnemonic Control, and Prefrontal Cortex. Behavioral and Cognitive Neuroscience Reviews. 1(3), 206-218. https://doi.org/10.1177/1534582302001003002
  4. Bruner, J., Goodnow, J., & G. Austin. (1956). A Study of Thinking. New York, NY: John Wiley & Sons.
  5. Chase, W. G. & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81 https://doi.org/10.1016/0010-0285(73)90004-2
  6. Craik, F. I. M. & Lockhart R. S. (1972). Levels of processing: a framework for memory research, Journal of Verbal Learning and Verbal Behavior, 11, 671-684 https://doi.org/10.1016/S0022-5371(72)80001-X
  7. Collins, A. M. & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428. https://doi.org/10.1037/0033-295X.82.6.407
  8. Costanzo, M., McArdle, J., Swett, B., Nechaev, V., Kemeny, S., Xu, J. & Braun, A. (2013). Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG. Frontiers in Human Neuroscience, doi: 10.3389/fnhum.2013.00293.
  9. Craik, F., Govoni, R., Naveh-Benjamin, M. & Anderson, N. (1996) The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125, 159-180. https://doi.org/10.1037/0096-3445.125.2.159
  10. Craik, F. I. M., Tulving, E. (1975) Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268-294. https://doi.org/10.1037/0096-3445.104.3.268
  11. Daselaar, S. M., Veltman, D. J., Rombouts, S. a R. B., Raaijmakers, J. G. W., Lazeron, R. H. C., & Jonker, C. (2002). Medial temporal lobe activity during semantic classification using a flexible fMRI design. Behavioural brain research, 136(2), 399-404. https://doi.org/10.1016/S0166-4328(02)00187-0
  12. Desmond, J., Glover, G. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies:Statistical power analyses. Journal of Neuroscience Methods, 118(2), 115-128. https://doi.org/10.1016/S0165-0270(02)00121-8
  13. Fernandes, M. & Morris, M. (2000). Divided attention and memory: evidence of substantial interference effects at retrieval and encoding. Journal of Experimental Psychology: General, 129(2), 155-176. https://doi.org/10.1037/0096-3445.129.2.155
  14. Friston, K. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61(4), 1300-1310. https://doi.org/10.1016/j.neuroimage.2012.04.018
  15. Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C-H., Jones, G., Oliver, I. & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236-243 https://doi.org/10.1016/S1364-6613(00)01662-4
  16. Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., & McMillan, C. (2002). The Neural Basis for Categorization in Semantic Memory. NeuroImage, 17(3), 1549-1561. doi:10.1006/nimg.2002.1273.
  17. Hugdahl, K., Lundervold, K., Ersland L., Smievoll, A. I., Sunbekg, H., Bakndon, R. & Roscher, B. E. (1999). Left frontal activation during a semantic categorization task: An fMRI-study. International Journal of Neuroscience, 99, 49-58. https://doi.org/10.3109/00207459908994312
  18. Huth, A., Wendy, A., Griffiths, T., Theunissen, F. & Jack, L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458. https://doi.org/10.1038/nature17637
  19. Jansma, J. M., Ramsey, N. F., de Zwart, J. a, van Gelderen, P., & Duyn, J. H. (2007). fMRI study of effort and information processing in a working memory task. Human brain mapping, 28(5), 431-40. doi:10.1002/hbm.20297.
  20. Lambon-Ralph, M., Lowe, C. & Rogers, T.T. (2007). Neural Basis of Category-specific Semantic Deficits for Living Things: Evidence from semantic dementia, HSVE and a Neural Network Model. Brain: A Journal of Neurology, 130(Pt 4):1127-37.
  21. Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 3009-3332.
  22. Low, A., Bentin, S., Rockstroh, B., Silberman, Y., Gomolla, A., Cohen, R. & Elbert, T. (2003). Semantic categorization in the human brain: spatiotemporal dynamics revealed by magnetoencephalography. Psychological Science, 14(4), 367-372. https://doi.org/10.1111/1467-9280.24451
  23. Maguire, M. J., White, J., & Brier, M. R. (2011). How semantic categorization influences inhibitory processing in middle-childhood: an Event Related Potentials study. Brain and cognition, 76(1), 77-86. doi:10.1016/j.bandc.2011.02.015.
  24. Koenig, P., Smith, E. E., Glosser, G., DeVita, C., Moore, P., McMillan, C., Gee, J., et al. (2005). The neural basis for novel semantic categorization. NeuroImage, 24(2), 369-83. doi:10.1016/j.neuroimage.2004.08.045.
  25. Kriegeskorte, N., Goebel, R, Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103, 3863-3868. https://doi.org/10.1073/pnas.0600244103
  26. Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4-32. https://doi.org/10.3389/neuro.01.016.2008
  27. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99(1), 22-44. https://doi.org/10.1037/0033-295X.99.1.22
  28. Manns, J. R., Clark, R. E., and Squire, L. R. (2002). Standard delay eyeblink classical conditioning is independent of awareness. Journal of Experimental Psychology: Animal Behavior Process, 28, 32-7. https://doi.org/10.1037/0097-7403.28.1.32
  29. Okada, T., Tanaka, S., Nakai, T., Nishiwaza, S., Inui, T., Sadato, N., ..., Konishi, J. (2000). Naming of animals and tools: A functional magnetic resonance imagine study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neuroscience Letters, 296, 33-36. https://doi.org/10.1016/S0304-3940(00)01612-8
  30. Pajula, J. & Tohka, J. (2016) How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Computational Intelligence and Neuroscience, 2016
  31. Pernet, C. R,, Sajda, P., & Rousselet, G. A. (2011) Single-trial analyses: Why bother? Frontiers in Psychology, 2, 322. doi: 10.3389/fpsyg.2011.00322.
  32. Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26, 303-343. https://doi.org/10.1207/s15516709cog2603_6
  33. Rajah, M. N. and McIntosh, A. R. (2005). Overlap in the functional neural systems involved in semantic and episodic memory retrieval. Journal of Cognitive Neuroscience, 17(3), 470-483. https://doi.org/10.1162/0898929053279478
  34. Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2006). Repetition suppression and semantic enhancement: An investigation of the neural correlates of priming. Neuropsychologia, 44(12), 2284-2295. https://doi.org/10.1016/j.neuropsychologia.2006.05.017
  35. Rosch, E. (1978). Principles of categorization. In E. R. a. B. Lloyd (Ed.), Cognition and Categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.
  36. Saumier, D., & Chertkow H. (2002). Semantic Memory. Current science inc, 2, 516-522.
  37. Slotnick, S., Moo, L., Segal, J. & Hard J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17, 75-82. https://doi.org/10.1016/S0926-6410(03)00082-X
  38. Thompson-Schill, S. L., 2003. Neuroimaging studies of semantic memory: inferring "how" from "where". Neuropsychologia, 41, 280-292. https://doi.org/10.1016/S0028-3932(02)00161-6
  39. Tunney R. J., Fernie G., Astle D. E. (2010) An ERP Analysis of Recognition and Categorization Decisions in a Prototype-Distortion Task. PLoS ONE 5(4): e10116. doi:10.1371/journal.pone.0010116.
  40. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978
  41. Ungerer, F. & Schmid, H. (2006). An Introduction to Cognitive Linguistics 2nd ed. New York, NY:Routledge.
  42. Wagner, A. D., Bunge, S. A. & Badre, D. (2004) Cognitive control, semantic memory, and priming:Contributions from prefrontal cortex. In Gazzaniga, M. S. (Eds), The Cognitive Neurosciences, 3rd ed. Cambridge, MA. Bradford Books.