• 제목/요약/키워드: temperature-dependent

Search Result 3,111, Processing Time 0.029 seconds

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Analytical Expressions of Temperature Dependent Breakdown Voltage and On-Resistance for Si Power MOSFETs (실리콘 전력 MOSFET의 온도 관련 항복 전압과 ON 저항을 위한 해석적 표현)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.290-297
    • /
    • 2003
  • Analytical Expressions of temperature dependent breakdown voltage and on-resistance for silicon power MOSFETs are induced by employing the temperature dependent effective ionization coefficient extracted from temperature dependent ionization coefficients for electron and hole, and electron mobility in silicon. The analytical results for temperature dependent breakdown voltage are compared with experimental results for tile doping concentration, 4x10$^{14}$ cm$^{-3}$ , 1x10$^{15}$ cm$^{-3}$ , 6x10$^{16}$ cm$^{-3}$ respectively. The variations of temperature dependent on-resistance and breakdown voltage dependent ideal specific on-resistance are also compared with the ones reported previously. Good fits with the experimental results ate found for the breakdown voltages within 10% in error for the temperature in the range of 77~300K at each doping concentration.

A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel (SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

Heat Transfer Behavior of Viscoelastic Fluid including buoyancy effect with Modified Temperature Dependent Viscosity Model in a Rectangular Duct (수정점도 모델을 이용한 직사각형 덕트에서의 부력을 고려한 점탄성 유체의 열전달 특성)

  • Sohn C. H.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.192-198
    • /
    • 1999
  • The present study proposes modified temperature-dependent non-Newtonian viscosity model and investigates flow characters and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The proposed modified temperature dependent viscosity model has non-zero value near the high temperature and high shear rate region while on the existing viscosity models have zero value. Two versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The combined effect of temperature dependent viscosity, buoyancy, and secondary flow caused by second normal stress difference are ail considered. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow caused by second normal stress difference. Calculated Nusselt numbers by the modified temperature-dependent viscosity model gives under prediction than the existing temperature-dependent viscosity model in the regions of thermally developed with same secondary normal stress difference coefficients with experimental results in the regions of thermally developed. The heat transfer enhancement of the viscoelastic fluid in a 2:1 rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

  • PDF

Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct

  • Sohn Chang-Hyun;Chang Jae-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.382-390
    • /
    • 2006
  • The present study proposes a modified temperature-dependent non-Newtonian viscosity model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent viscosity, buoyancy, and secondary flow caused by the second normal stress difference are considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model give good agreement with the experimental results. The heat transfer enhancement of viscoelastic fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Thermal post-buckling analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.337-346
    • /
    • 2018
  • The purpose of this study is to investigate thermal post-buckling analysis of a laminated composite beam subjected under uniform temperature rising with temperature dependent physical properties. The beam is pinned at both ends and immovable ends. Under temperature rising, thermal buckling and post-buckling phenomena occurs with immovable ends of the beam. In the nonlinear kinematic model of the post-buckling problem, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. Also, material properties of the laminated composite beam are temperature dependent: that is the coefficients of the governing equations are not constant. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The effects of the fibber orientation angles, the stacking sequence of laminates and temperature rising on the post-buckling deflections, configurations and critical buckling temperatures of the composite laminated beam are illustrated and discussed in the numerical results. Also, the differences between temperature dependent and independent physical properties are investigated for post-buckling responses of laminated composite beams.

Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials

  • Rajabi, Mohammad;Soltani, Nasser;Eshraghi, Iman
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.217-230
    • /
    • 2016
  • Effects of temperature dependent material properties on mixed mode fracture parameters of functionally graded materials subjected to thermal loading are investigated. A domain form of the $J_k$-integral method including temperature-dependent material properties and its numerical implementation using finite element analysis is presented. Temperature and displacement fields are calculated using finite element analysis and are used to compute mixed mode stress intensity factors using the $J_k$-integral. Numerical results indicate that temperature-dependency of material properties has considerable effect on the mixed-mode stress intensity factors of cracked functionally graded structures.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.