• Title/Summary/Keyword: temperature shock

Search Result 739, Processing Time 0.025 seconds

Campylobacter jejuni 의 열충격 반응과 그유전자에 관한 연구

  • 김치경;임채일;이길재
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.232-238
    • /
    • 1992
  • Canz~~j~lohuc;tc.~jurn i werc studied for their heat shock responses at several elevated temperatures and their heat shock genes were detected by the technique of Southern hybridization. (.. ,jc\ulcorneruni sy~>thesized the major heat shock proteins of hsp90. hsphh. and hsphO at 48$^{\circ}$C . ant1 their w~u.ival rates were maintained as the same level at optimal temperature. '1-hc heat shock genes in chromosome of C ,jc:jutii werc determined to be homologous to the heat shock genes or E. t,oli. by showing strong signals in Southern hybridization analysis using clnaK and groESL- as DNA probe But the restriction sites for thc fragmcnts including heat shock genes were different betueen E. c,oli and C ,jtjuni.

  • PDF

Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas (아르곤 기체에서 진행하는 충격파 연구를 위한 비평형 분자동역학 모의실험 개발 및 응용)

  • Hwang, Hyon-Seok;Kwon, Chan-Ho;Kim, Hong-Lae;Kim, Seong-Shik;Park, Min-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.156-163
    • /
    • 2010
  • A nonequilibrium molecular dynamics(NEMD) simulation method is developed and applied to study shock waves propagating through argon gas. In this simulation method, shock waves are generated by pushing a piston at a constant speed from one side of a simulation box filled with argon molecules. A linear relationship between piston speeds and shock speeds is observed. Thermodynamic properties including density, temperature, and pressure before and after the shock front are obtained from the simulations and compared with the well-known Rankine-Hugoniot equations based on ideal gases. The comparison shows an excellent agreement, indicating that this NEMD simulation method can be employed to investigate various physical properties of shock waves further.

Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures (붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교)

  • Kim, So-Sun;So, Jae-Hyeong;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1360-1366
    • /
    • 2016
  • Heat shock proteins (HSPs) are induced in response to various physiological or environmental stressors. However, the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). Fish models provide an ideal system for examining the biochemical and molecular mechanisms of adaptation to various temperatures and water environments. In this study, we examined the pattern differentials of heat shock factor 1 (HSF1) and expression of heat shock protein 70 (HSP70) in response to thermal stress in goldfish and mouse hepatocyte cultures by immune-blot analysis. Goldfish HSF1 (gfHSF1) changed from a monomer to a trimer at $33^{\circ}C$ and showed slightly at $37^{\circ}C$, whereas mouse HSF1 (mHSF1) did so at $42^{\circ}C$. This experiment showed similar results to a previous study, indicating that gfHSF1 and mHSF1 play different temperature in the stress response. We also examined the activation conditions of the purified recombinant proteins in human HSF1 (hmHSF1) and gfHSF1 using CD spectroscopy and immune-blot analysis. The purified recombinant HSF1s were treated from $25^{\circ}C$ to $42^{\circ}C$. Structural changes were observed in hmHSF1 and gfHSF1 according to the heat-treatment conditions. These results revealed that both mammal HSF1 (human and mouse HSF1) and fish HSF1 exhibited temperature-dependent changes; however, their optimal activation temperatures differed.

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향)

  • Kim, Ji-Won;Baek, Min-Seok;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Fracture time of cracked body under thermal shock (열충격하에 있는 균열체의 파괴시간)

  • 이강용;박정수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.91-98
    • /
    • 1992
  • In the research on the fracture time of soda lime silicate glass under thermal shock, it is shown that the theoretical and experimental fracture times are in good agreement, the suggested method to measure critical stress intensity factor for small three-point bending specimen is useful and the edge temperature before thermal shock on cracked side vs. crack length and fracture time are inversely proportional.

  • PDF

Fracture Behavior and Mechanical properties of WC-Co Subjected to Thermal Shock (WC-Co의 열충격 후 파괴 현상과 기계적 성질)

  • ;Joh
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 1990
  • WC-Co composites are widely used as cutting or drilling tools because of their high hardness, strength, and fracture toughness. The working temperature is, however, generally in the range of 300-$700^{\circ}C$ so thermal shock fracture of WC-Co can occur. In this study, the strength, fracture toughness and fracture surface of 16wt% Co bonded tungsten carbide composites before and after thermal shock were observed.

  • PDF

The Calculation of Hugoniot Adiabatics and Viscosity of Shock Compressed Water

  • Baik, Dae-Hyun;Jhon, Mu-Shik;Yoon, Byoung-Jip
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.293-296
    • /
    • 1986
  • The Hugoniot adiabatics and viscosity of shock compressed water have been calculated by applying the significant structure theory of water. To consider the effects of pressure and temperature, the sublimation energy has been expressed by the spherically averaged Stillinger-Rahman ST2 potential. Good agreements between theory and experiment are obtained in the whole extreme ranges of shock wave condition up to 100 GPa (lMbar).

An Experimental Study on the Control of the Combustion Rate by Temperature Control of Gas Entrained into the Filter in Burner-Type Particulate Trap (버너방식 DPF 시스템에서 가스온도 제어를 통한 입자상물질 연소율제어의 실험적 검증)

  • Park, D. S.;Kim, J. U.;Cho, H.;Kim, E. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.130-141
    • /
    • 1997
  • Work on the reduction of particulate matter(PM) from a diesel vehicl has led to a new trp system and a control method to control the combustion rate of the PM filtrated in the trap, which was named as 'Active Exhaust Feeding Regeneration(AEFR) System' by its operation mechanism. Ceramic cordierite filter is a major component of the trap and susceptible to thermal shock. Therefore the system should be designed to reduce the peak temperature and temperature gradients in the trap ; these have been considered to be the main factors causing thermal shock of the filter during the regeneration. It uses the engine's exhaust gas partially for the regeneration of the ceramic filter. It controlled bypass flow rate of the engine's exhaust gas precisely to control the temperature of the gas entrained into the filter. Gas temperatures were measured inside filter, and the oxygen concentration at the outlet of the filter was also monitored during the regeneration to analyze the combustion process of the PM. The temperature distributions and temperature gradients in the filter during the regeneration varied widely according to the regeneration control schemes. Finally, this system shows relatively low peak temperature and temperature gradients in the filter during its regeneration. It is considered that this system uses a mew method to control the combustion rate of the PM, which is different from the methods used in the previous studies.

  • PDF

Critical Low Temperature and Response of Behavioral Tolerance in Red Seabream Pagrus major fingerlings Exposed to Cold Shock (저온 충격에 노출된 참돔 Pagrus major 치어의 임계 저 수온 및 행동 내성 반응)

  • Yoon, Sung Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.575-584
    • /
    • 2021
  • The critical low temperature and response of the behavioral tolerance of red sea bream Pagrus major fingerlings were determined using the continuous behavior monitoring system (CBMS). The behavior of the experimental organisms was observed by decreasing the water temperature by 2.0℃ and 4.0℃ every 12 hours and 24 hours in the range of 8.0-20.0℃. An unstable behavior pattern was observed in red seabream fingerlings exposed to water temperatures below 12.0℃, in which the swimming activity decreased and repeatedly stopped, regardless of the exposure time and water temperature fluctuation. The swimming ability of the organisms exposed to 8.0-10.0℃ decreased sharply, and the behavior of staying at the bottom of the test tank was observed. Only 50 % of the organisms survived due to the low-temperature stress, and all individuals died within six hours after the cold shock. In addition, the behavior index (BI) decreased rapidly, and the amplitude change of the coefficient of variation (CV) was found to have a greater variation than the other water temperatures (p<0.05). Low-temperature stress of red sea bream is promoted at 12.0℃, and it is interpreted as the tolerance limit, which can induce a sublethal response of the organisms exposed to cold shock of 8.0-10.0℃.