Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.12.1360

Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures  

Kim, So-Sun (Department of Chemistry, Pusan National University)
So, Jae-Hyeong (Department of Chemistry, Pusan National University)
Park, Jang-Su (Department of Chemistry, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.12, 2016 , pp. 1360-1366 More about this Journal
Abstract
Heat shock proteins (HSPs) are induced in response to various physiological or environmental stressors. However, the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). Fish models provide an ideal system for examining the biochemical and molecular mechanisms of adaptation to various temperatures and water environments. In this study, we examined the pattern differentials of heat shock factor 1 (HSF1) and expression of heat shock protein 70 (HSP70) in response to thermal stress in goldfish and mouse hepatocyte cultures by immune-blot analysis. Goldfish HSF1 (gfHSF1) changed from a monomer to a trimer at $33^{\circ}C$ and showed slightly at $37^{\circ}C$, whereas mouse HSF1 (mHSF1) did so at $42^{\circ}C$. This experiment showed similar results to a previous study, indicating that gfHSF1 and mHSF1 play different temperature in the stress response. We also examined the activation conditions of the purified recombinant proteins in human HSF1 (hmHSF1) and gfHSF1 using CD spectroscopy and immune-blot analysis. The purified recombinant HSF1s were treated from $25^{\circ}C$ to $42^{\circ}C$. Structural changes were observed in hmHSF1 and gfHSF1 according to the heat-treatment conditions. These results revealed that both mammal HSF1 (human and mouse HSF1) and fish HSF1 exhibited temperature-dependent changes; however, their optimal activation temperatures differed.
Keywords
Goldfish; heat shock factor1; heat shock protein70; hepatocyte; trimerization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abravaya, K., Phillips, B. and Morimoto, R. I. 1991. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5, 2117-2127.   DOI
2 Ahn, S. G., Liu, P. C., Klyachko, K., Morimoto, R. I. and Thiele, D. J. 2001. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 15, 2134-2145.   DOI
3 Anckar, J. and Sistonen, L. 2007. Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv. Exp. Med. Biol. 594, 78-88.   DOI
4 Chang, Z., Lu, M., Kim, S. S. and Park, J. S. 2014. Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways. Toxicol. Lett. 226, 6-13.   DOI
5 Dietz, K. J. and Scheibe, R. 2004. Redox regulation, an introduction. Physiol. Plant. 120, 1-3.   DOI
6 Dai, C., Whitesell, L., Rogers, A. B. and Lindquist, S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005-1018.   DOI
7 Hsu, A. L., Murphy, C. T. and Kenyon, C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145   DOI
8 Farkas, T., Kutskova, Y. A. and Zimarino, V. 1998 Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18, 906-918.   DOI
9 George, K., Iwama, Philip, T., Thomas, Robert, B., Forsyth, Mathilakath, M. and Vijayan. 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8, 35-56.   DOI
10 Hahn, J. S., Hu, Z., Thiele, D. J. and Iyer, V. R. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249-5256.   DOI
11 Iavicoli, I., Fontana, L. and Bergamaschi, A. 2009. The effects of metals as endocrine disruptors J. Toxicol. Environ. Health B Crit. Rev. 12, 206-223.   DOI
12 McMillan, D. R., Xiao, X., Shao, L., Graves, K. and Benjamin, I. J. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523-7528   DOI
13 Kim, S. S., Chang, Z. and Park, J. S. 2015. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). Fish Shellfish Immunol. 43, 375-386.   DOI
14 Li, C .R., Lee, S. H., Kim, S. S., Kim, A., Lee, K. W., Lu, M., Kim, H. E., Kwak, I. J., Lee, Y. J., Lim, D. K. Lee, J. S., Kang, S. W., Huh, M. D., Chung, K. H. and Park, J. S. 2009. Environmental estrogenic effects and gonadal development in wild goldfish (Carassius auratus). Environ. Monit. Assess. 150, 397-404.   DOI
15 Lu, M., Kim, H. E., Li, C. R., Kim, S., Kwak, I. J., Lee, Y. J., Kim, S. S. and Park, J. S. 2008. Two distinct disulfide bonds formed in human heat shock transcription factor 1Act in opposition to regulate its DNA binding activity. Biochemistry 47, 6007-6015.   DOI
16 Lu, M., Lee, Y. J., Park, S. M., Kang, H. S., Kang, S. W., Kim, S. and Park, J. S. 2009. Aromatic-participant interactions are essential for disulfide-bond-based trimerization in human heat shock transcription factor 1. Biochemistry 48, 3795-3797.   DOI
17 Mathew, A., Mathur, S. K., Jolly, C., Fox, S. G., Kim, S. and Morimoto, R. I. 2001. Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21, 7163-7171.   DOI
18 Morimoto, R. I., Tissieres, A. and Georgopoulos, C. 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press. NY, USA.
19 Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., Fraenkel, E., Ince, T. A., Whitesell, L. and Lindquist, S. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549-562.   DOI
20 Morley, J. F. and Morimoto, R. I. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657-664.   DOI
21 Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796.   DOI
22 Nakai, A. and Morimoto, R. I. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13, 1983-1997.   DOI
23 Sarge, K. D., Zimarino, V., Holm, K., Wu, C. and Morimoto, R. I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5, 1902-1911.   DOI
24 Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I. and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469.   DOI
25 Pirkkala, L., Alastalo, T. P., Zuo, X., Benjamin, I. J. and Sistonen, L. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20, 2670-2675.   DOI
26 Rabindran, S. K., Giorgi, G., Clos, J. and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88, 6906-6910.   DOI
27 Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. and Wu, C. 1993. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259, 230-234.   DOI
28 Sarge, K. D., Murphy, S. P. and Morimoto, R. I. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 3, 1392-1407.
29 Schuetz, T. J., Gallo, G. J., Sheldon, L., Tempst, P. and Kingston, R. E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88, 6911-6915.   DOI
30 Sun, Y. and Oberley, L. W. 1996. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21, 335-348.   DOI
31 Yamashita, M., Hirayoshi, K. and Nagata, K. 2004. Characte rization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336, 207-218.   DOI
32 Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D. and Myers, R. M. 2004. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell. 15, 1254-1261.   DOI
33 Vihervaara, A., Sergelius, C., Vasara, J., Blom, M. A. H., Elsing, A. N., Roos-Mattjus, P. and Sistonen, L. 2013. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl. Acad. Sci. USA 110, 3388-3397.   DOI
34 Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9, 122-133.   DOI
35 Wu, B. J., Kingston, R. E. and Morimoto, R. I. 1986. Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl. Acad. Sci. USA 83, 629-633.   DOI
36 Xiao, X., Zuo, X., Davis, A. A., McMillan, D. R., Curry, B. B., Richardson, J. A. and Benjamin, I. J. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943-5952   DOI
37 Zuo, J., Baler, R., Dahl, G. and Voellmy, R. 1994. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14, 7557-7568.   DOI