Browse > Article

Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas  

Hwang, Hyon-Seok (Department of Chemistry, Kangwon National University)
Kwon, Chan-Ho (Department of Chemistry, Kangwon National University)
Kim, Hong-Lae (Department of Chemistry, Kangwon National University)
Kim, Seong-Shik (ADD)
Park, Min-Kyu (ADD)
Publication Information
Journal of the Korea Institute of Military Science and Technology / v.13, no.1, 2010 , pp. 156-163 More about this Journal
Abstract
A nonequilibrium molecular dynamics(NEMD) simulation method is developed and applied to study shock waves propagating through argon gas. In this simulation method, shock waves are generated by pushing a piston at a constant speed from one side of a simulation box filled with argon molecules. A linear relationship between piston speeds and shock speeds is observed. Thermodynamic properties including density, temperature, and pressure before and after the shock front are obtained from the simulations and compared with the well-known Rankine-Hugoniot equations based on ideal gases. The comparison shows an excellent agreement, indicating that this NEMD simulation method can be employed to investigate various physical properties of shock waves further.
Keywords
Shock Wave; Shock Front; Argon Gas; Nonequilibrium Molecular Dynamics Simulation; Rankine-Hugoniot Relations; Light-Generating Device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. M. Mott-Smith, "The Solution of the Boltzmann Equation for a Shock Wave", Phys. Rev., Vol. 82, No. 6, pp. 885-892, 1951. 6.   DOI
2 J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids", Academic Press Inc., London, 1986.
3 B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, "Shock-wave Structure Via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuumm Mechanis", Phys. Rev. A, Vol. 22, pp. 2798-2808, 1980. 12.   DOI
4 A. B. Belonoshko,, "Atomic Simulation of Shock Wave-Induced Melting in Argon", Science, Vol. 275, No. 5302, pp. 955-957, 1997. 2.   DOI   ScienceOn
5 L. Cai, Q. Chen, J. Zhang, D. Chen, F. Jing, "Atomic Simulation of Shock Compressed Liquid Helium", Physica B Vol. 269, pp. 304-309, 1999. 9.   DOI   ScienceOn
6 J. D. Lambert, "Vibrational and Rotational Relaxation in Gases", Clarendon Press, Oxford, 1977.
7 T. P. Cotter, "Collision Kinetics in a Shock Wave", Los Alamos Scientific Laboratory Report LA-1413, Los Alamos National Laboratory, New Mexico, 1952.
8 R. L. Conger, L. T. Long, J. A. Parks, and J. H. Johnson, "The Spectrum of the Argon Bomb", Appl. Opt., Vol. 4, pp. 273-276, 1965. 3.   DOI
9 C. R. Jones and W. C. Davis, "Optical Properties of Explosive-Driven Shock Waves in Noble Gases", LA-9475-MS, Los Alamos Nat'l. Lab., Los Alamos, 1982. 9.
10 M. P. Allen and Tildesley, "Computer Simulation of Liquids", Clarendon, Oxford, 1987.
11 J. W. Bond,, "Structure of a Shock Front in Argon", Phys. Rev., Vol. 105, No. 6, pp. 1683-1694, 1957. 3.   DOI
12 A. G. Gaydon and I. R., Hurle, "The Shock Tube in High Temperature Chemical Physics", Reinhod Publishing Co., New York, 1963.
13 G. A. Bird, "Molecular Gas Dynamics", Clarendon, Oxford, 1976.
14 G. Phan-Van-Diep, D. Erwin, E. P. Muntz, "Nonequilibrium Molecular Motion in a Hypersonic Shock Wave", Science, Vol. 245, pp. 624-626, 1989. 8.   DOI   ScienceOn
15 B. L. Holian and P. S. Lomdahl, "Plasticity Induced by Shock Waves in Nonequilibrium Molecular Dynamics Simulations", Science, Vol. 280, pp. 2085-2088, 1998. 6.   DOI   ScienceOn