• Title/Summary/Keyword: temperature mapping

Search Result 232, Processing Time 0.038 seconds

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Construction and Operation of a 37-channel Hemispherical Magnetoencephalogram System (37채널 반구형 뇌자도 측정장치 제작 및 동작)

  • 이용호;김진목;권혁찬;김기웅;박용기;강찬석;이순걸
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.159-165
    • /
    • 2003
  • We developed a 37-channel magnetoencephalogram (MEG) measurement system based on low-noise superconducting quantum interference device (SQUID) magnetometets, and operated the system to measure MEG signals. By using double relaxation oscillation SQUIDs with high flux-4o-voltage transfers, the SQUID outputs could be measured directly by room temperature preamplifiers and compact readout circuits were used for SQUID operation. The average field noise level of the magnetometers is about 3 fT/√Hz in the white region, low enough for MEG measurements when operated inside a magnetically shielded room. The 37 magnetometers were distributed on a hemispherical surface haying a radius of 125 mm. In addition to the 37 sensing channels. 11 reference channels were installed to pickup external noise and to form software gradiometers. A low-noise liquid helium dewar was fabricated with a liquid capacity of 30 L and boil-off rate of 4 L/d. The signal processing software consists of digital filtering, software gradiometer, isofield mapping and source localization. By using the developed system, we measured auditory-evoked fields and localized the current dipoles, demonstrating the effectiveness of the system.

Performance Evaluation of the High-Resolution WRF Meteorological Simulation over the Seoul Metropolitan Area (WRF 모형의 수도권 지역 상세 국지 기상장 모의 성능 평가)

  • Oh, Jun-Seo;Lee, Jae-Hyeong;Woo, Ju-Wan;Lee, Doo-Il;Lee, Sang-Hyun;Seo, Jihyun;Moon, Nankyoung
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.257-276
    • /
    • 2020
  • Faithful evaluation of the meteorological input is a prerequisite for a better understanding of air quality model performance. Despite the importance, the preliminary meteorological assessment has rarely been concerned. In this study, we aim to evaluate the performance of the Weather Research and Forecasting (WRF) model conducting a year-long high-resolution meteorological simulation in 2016 over the Seoul metropolitan area. The WRF model was configured based on a series of sensitivity simulations of initial/boundary meteorological conditions, land use mapping data, reanalysis grid nudging method, domain nesting method, and urban canopy model. The simulated results of winds, air temperature, and specific humidity in the atmospheric boundary layer (ABL) were evaluated following statistical evaluation guidance using the surface and upper meteorological measurements. The statistical evaluation results are presented. The model performance was interpreted acceptable for air quality modeling within the statistical criteria of complex conditions, showing consistent overestimation in wind speeds. Further statistical analysis showed that the meteorological model biases were highly systematic with systematic bias fractions (fSB) of 20~50%. This study suggests that both the momentum exchange process of the surface layer and the ABL entrainment process should be investigated for further improvement of the model performance.

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong;Wel, Xiao-Xiao;Zhao, Meng-Di;He, Yun-Long;Zheng, Xue-Feng;Mao, Wei;Ma, Xiao-Hua;Zhang, Jin-Cheng;Hao, Yue
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.125-128
    • /
    • 2017
  • This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

Sheet fabrication of Ni-WC anode for Molten Carbonate Fuel Cell by Tape Casting Method (테이프 캐스팅법에 의한 MCFC Anode용 Ni-WC 박판 제조)

  • Choe, Jin-Yeong;Jeong, Seong-Hoe;Jang, Geon-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.715-720
    • /
    • 2000
  • By the mechanical alloying method. Ni-WC composite materials were prepared to improve the deformation-resistance for creep and sintering of Ni-anode at the operating temperature of $650^{\circ}C$. Mechanically alloyed powder w was initially fabricated by ball milling for 80hr, and then amorphization was occurred by the destruction of ordered crystals based on XRD analysis. In order to investigate the electrochemical performance and sheet characteristics of Ni-WC anode, tape casting process was adopted. Finally, the obtained sheet thickness of Ni- we after sintering at $1180^{\circ}C$ for 60 minutes in $H_2$ atmosphere was O.9mm and the average pore size was $3~5{\mu\textrm{m}}$ with porosities of 55%. The second phase was not observed in Ni- W matrix while W particles were finely and uniformly distributed in Ni matrix. This fine and uniform distributed W particles in Ni matrix are expected to enhance the mechanical properties of Ni anode through the dispersion and solid solution hardening mechanisms.

  • PDF

Finite Element Formulation for the Finite Strain Thermo-Elasto-Plastic Solid using Exponential Mapping Algorithm : Model and Time Integration Scheme (지수 사상을 이용한 비선형 열-탄소성 고체의 유한요소해석 : 모델과 시간적분법)

  • 박재균
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The linear analysis for the balance of linear momentum of a structure is relatively easy to perform, but the error becomes large when the structure experiences large deformation. Therefore, the material and geometric nonlinearity need to be considered for the precise calculations in that case. The plastic flow of a ductile steel-like metal mainly transforms its dissipated mechanical energy into heat, which transfers under the first and second law of thermodynamics. This heat increases the temperature of the material and the strength of the material decreases accordingly, which affects mechanical behavior of the given structure. This paper presents a finite-strain thermo-elasto-plastic steel model. This model can handle large deformation and thermal load simultaneously, which is common during earthquake periods. Two 3-dimensional finite element analyses verify this formulation.

Predicting lipoabdominoplasty complications with infrared thermography: a delta-R analysis

  • Resende, Patricia Rodrigues;Brioschi, Marcos Leal;Meneck, Franciele De;Neves, Eduardo Borba;Teixeira, Manoel Jacobsen
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.553-558
    • /
    • 2021
  • The diagnosis of the main complications resulting from lipoabdominoplasty has not yet been standardized. Infrared thermal imaging has been used to assess possible complications, such as necrosis and changes in micro- and macro-circulation, based on perforator mapping techniques, among others. The objective of this study was to present two clinical cases involving thermal imaging monitoring of the healing process of lipoabdominoplasty in the immediate postoperative evaluation and its preliminary results. Infrared thermography was performed 24 hours after the operation and on postoperative days 5, 25, and 27. In clinical case 1, it was found that the delta-R (∆TR)-defined as the difference in minimum temperature between the highest and lowest points in the SA3 region (caution suction area) following the classification established by Matarasso-was 0.4℃ at 24 hours after surgery and decreased to 0.1℃ on a postoperative day 5. There were no complications in this case. In contrast, in clinical case 2, the ∆TR was 1.7℃ at 24 hours after surgery (upon hospital discharge) and remained high, at 2.2℃, on postoperative day 5. A higher ∆TR was found in the second patient, who developed necrosis of the surgical wound. The ∆TR thermal index may be a new tool for predicting possible complications, complementing the clinical evaluation and therapeutic decision-making.

Assessing the Climate Change Impacts on Paddy Rice Evapotranspiration Considering Uncertainty (불확실성을 고려한 논벼 증발산량 기후변화 영향 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Cho, Jaepil;Hur, Seung-Oh;Choi, Dongho;Kim, Min-Kyeong
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.143-156
    • /
    • 2018
  • Evapotranspiration is a key element in designing and operating agricultural hydraulic structures. The profound effect of climate change to local agro-hydrological systems makes it inevitable to study the potential variability in evapotranspiration rate in order to develop policies on future agricultural water management as well as to evaluate changes in agricultural environment. The APEX-Paddy model was used to simulate local evapotranspiration responses to climate change scenarios. Nine Global Climate Models(GCMs) downscaled using a non-parametric quantile mapping method and a Multi?Model Ensemble method(MME) were used for an uncertainty analysis in the climate scenarios. Results indicate that APEX-Paddy and the downscaled 9 GCMs reproduce evapotranspiration accurately for historical period(1976~2005). For future periods, simulated evapotranspiration rate under the RCP 4.5 scenario showed increasing trends by -1.31%, 2.21% and 4.32% for 2025s(2011~2040), 2055s(2041~2070) and 2085s(2071~2100), respectively, compared with historical(441.6 mm). Similar trends were found under the RCP 8.5 scenario with the rates of increase by 0.00%, 4.67%, and 7.41% for the near?term, mid?term, and long?term periods. Monthly evapotranspiration was predicted to be the highest in August, July was the month having a strong upward trend while. September and October were the months showing downward trends in evapotranspiration are mainly resulted from the shortening of the growth period of paddy rice due to temperature increase and stomatal closer as ambient $CO_2$ concentration increases in the future.

Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials (고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장)

  • Lee, Chae Young;Choi, Jeong Min;Kim, Dae Sung;Park, Mi Seon;Jang, Yeon Suk;Lee, Won Jae;Yang, In Seok;Kim, Tae Hee;Chen, Xiufang;Xu, Xiangang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.100-103
    • /
    • 2019
  • The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.