DOI QR코드

DOI QR Code

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Wel, Xiao-Xiao (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Zhao, Meng-Di (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • He, Yun-Long (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Zheng, Xue-Feng (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Mao, Wei (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Ma, Xiao-Hua (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Zhang, Jin-Cheng (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University) ;
  • Hao, Yue (Key Lab of Wide Band Gap Semiconductor Materials and Devices, Xidian University)
  • Received : 2016.06.30
  • Accepted : 2017.02.22
  • Published : 2017.06.25

Abstract

This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

Keywords

References

  1. V. Kumar, D. H. Kim, and A. Basu, IEEE Electron Device Lett., 29, 18 (2008). [DOI: http://dx.doi.org/10.1109/LED.2007.911612]
  2. A. Koudymov, C. X. Wang, and V. Adivarahan, IEEE Electron Device Lett., 28, 5 (2007). [DOI: http://dx.doi.org/10.1109/LED.2006.887642]
  3. A. Chini, D. Buttari, R. Coffie, L. Shen, and S. Heikman, IEEE Electron Device Lett., 25, 229 (2004). [DOI: http://dx.doi.org/10.1109/LED.2004.826525]
  4. H. Xing, Y. Dora, A. Chini, S. Heikman, and S. Keller, IEEE Electron Device Lett., 25, 161 (2004). [DOI: http://dx.doi.org/10.1109/LED.2004.824845]
  5. P. Srivastava, K. Cheng, J. Das, M. V. Hove, and M. Leys, CS MANTECH Conference. (Boston, USA, 2012).
  6. Y. Dora, A. Chakraborty, S. Heikman, L. McCarthy, and S. Keller, IEEE Electron Device Lett., 27, 529 (2006). [DOI: http://dx. doi.org/10.1109/LED.2006.876306]
  7. Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, and S. J. Cai, IEEE Electron Device Lett., 33, 38 (2012). [DOI: http://dx.doi.org/10.1109/LED.2011.2172972]
  8. B. Lu, E. L. Piner, and T. Palacios, IEEE Electron Device Lett., 31, 302 (2010). [DOI: http://dx.doi.org/10.1109/LED.2010.2040704]
  9. M. W. Ha, J. H. Lee, M. K. Han, and C. K. Hahn, Solid-State Electronics, 73, 1 (2012). [DOI: http://dx.doi.org/10.1016/j.sse.2012.03.002]
  10. V. V. N. Obreja, IEEE. Power Electronics Specialists Conference (Rhodes, Greece, 2008). [DOI: http://dx.doi.org/10.1109/PESC.2008.4592201]