DOI QR코드

DOI QR Code

WRF 모형의 수도권 지역 상세 국지 기상장 모의 성능 평가

Performance Evaluation of the High-Resolution WRF Meteorological Simulation over the Seoul Metropolitan Area

  • 오준서 (공주대학교 자연과학대학 대기과학과) ;
  • 이재형 (공주대학교 자연과학대학 대기과학과) ;
  • 우주완 (공주대학교 자연과학대학 대기과학과) ;
  • 이두일 (공주대학교 자연과학대학 대기과학과) ;
  • 이상현 (공주대학교 자연과학대학 대기과학과) ;
  • 서지현 (한국환경정책.평가연구원) ;
  • 문난경 (한국환경정책.평가연구원)
  • Oh, Jun-Seo (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Jae-Hyeong (Department of Atmospheric Science, Kongju National University) ;
  • Woo, Ju-Wan (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Doo-Il (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University) ;
  • Seo, Jihyun (Korea Environment Institute) ;
  • Moon, Nankyoung (Korea Environment Institute)
  • 투고 : 2020.05.31
  • 심사 : 2020.08.21
  • 발행 : 2020.09.30

초록

Faithful evaluation of the meteorological input is a prerequisite for a better understanding of air quality model performance. Despite the importance, the preliminary meteorological assessment has rarely been concerned. In this study, we aim to evaluate the performance of the Weather Research and Forecasting (WRF) model conducting a year-long high-resolution meteorological simulation in 2016 over the Seoul metropolitan area. The WRF model was configured based on a series of sensitivity simulations of initial/boundary meteorological conditions, land use mapping data, reanalysis grid nudging method, domain nesting method, and urban canopy model. The simulated results of winds, air temperature, and specific humidity in the atmospheric boundary layer (ABL) were evaluated following statistical evaluation guidance using the surface and upper meteorological measurements. The statistical evaluation results are presented. The model performance was interpreted acceptable for air quality modeling within the statistical criteria of complex conditions, showing consistent overestimation in wind speeds. Further statistical analysis showed that the meteorological model biases were highly systematic with systematic bias fractions (fSB) of 20~50%. This study suggests that both the momentum exchange process of the surface layer and the ABL entrainment process should be investigated for further improvement of the model performance.

키워드

참고문헌

  1. Angevine, W. M., J. Brioude, S. Mckeen, and J. S. Holloway, 2014: Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble. Geosci. Model Dev., 7, 2817-2829, doi:10.5194/gmd-7-2817-2014.
  2. Baker, K. R., C. Misenis, M. D. Obland, R. A. Ferrare, A. J. Scarino, and J. T. Kelly, 2013: Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California. Atmos. Environ., 80, 299-309, doi:10.1016/j.atmosenv.2013.08.006.
  3. Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Q. J. R. Meteorol. Soc., 130, 1327-1347, doi:10.1256/qj.03.73.
  4. Borge, R., V. Alexandrov, J. Jose del Vas, J. Lumbreras, and E. Rodriguez, 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian peninsula. Atmos. Environ., 42, 8560-8574, doi:10.1016/j.atmosenv.2008.08.032.
  5. Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 51-77, doi:10.1115/1.2128636.
  6. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. PART I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  7. Cheng, F.-Y., and D. W. Byun, 2008: Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston metropolitan area, Part I: Meteorological simulation results. Atmos. Environ., 42, 7795-7811, doi:10.1016/j.atmosenv.2008.04.055.
  8. Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteor. Climatol., 52, 570-587, doi:10.1175/JAMC-D-12-0109.1.
  9. Choi, M.-W., J.-H. Lee, J.-W. Woo, C.-H. Kim, and S.-H. Lee, 2019: Comparison of $PM_{2.5}$ chemical components over East Asia simulated by the WRF-Chem and WRF/CMAQ models: On the models' prediction inconsistency. Atmosphere, 10, 618, doi:10.3390/atmos10100618.
  10. Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202-214. https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2
  11. Cohen, M. A., and Coauthors, 2009: Approach to estimating participant pollutant exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environ. Sci. Technol., 43, 4687-4693. https://doi.org/10.1021/es8030837
  12. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  13. Emery, C., E. Tai, and G. Yarwood, 2001: Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. ENVIRON International Corporation, Final Report, 235 pp.
  14. Miglietta, M. M., P. Thunis, E. Georgieva, A. Pederzoli, B. Bessagnet, E. Terrenoire, and A. Colette, 2012: Evaluation of WRF model performance in different European regions with the DELTA-FAIRMODE evaluation tool. Int. J. Environ. Pollut., 50, 83-97. https://doi.org/10.1504/IJEP.2012.051183
  15. Garcia-Diez, M., J. Fernandez, L. Fita, and C. Yague, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc., 139, 501-514, doi:10.1002/qj.1976.
  16. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled "online" chemistry within the WRF model. Atmos. Environ., 39, 6957-6975, doi:10.1016/j.atmosenv.2005.04.027.
  17. Hamdi, R., D. Degrauwe, and P. Termonia, 2012: Coupling the Town Energy Balance (TEB) scheme to an operational limited-area NWP model: Evaluation for a highly urbanized area in Belgium. Wea. Forecasting, 27, 323-344, doi:10.1175/WAF-D-11-00064.1.
  18. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  19. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  20. IARC, 2013: Outdoor air pollution a leading environmental cause of cancer deaths. International Agency for Research on Cancer, World Health Organization, No. 221.
  21. Jeon, W.-B., H. W. Lee, S.-H. Lee, H.-J. Choi and H. H. Leem, 2009: Numerical study on the impact of SST spatial distribution on regional circulation. J. Korean Soc. Atmos. Environ., 25, 304-315 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2009.25.4.304
  22. Jeong, J.-H., I. Oh, Y.-H. Kang, J.-H. Bang, H. An, H.-B. Seok, Y.-K. Kim, J. Hong, and J. Kim, 2016: WRF modeling approach for improvement of air quality modeling in the Seoul metropolitan region: Seasonal sensitivity analysis of the WRF physics options. J. Environ. Sci. Int., 25, 67-83 (in Korean with English abstract). https://doi.org/10.5322/JESI.2016.25.1.67
  23. Jimenez-Esteve, B., M. Udina, M. R. Soler, N. Pepin, and J. R. Miro, 2018: Land use and topography influence in a complex terrain area: A high resolution mesoscale modelling study over the eastern Pyrenees using the WRF model. Atmos. Res., 202, 49-62, doi:10.1016/j.atmosres.2017.11.012.
  24. Jimenez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300-316, doi:10.1175/JAMCD-11-084.1.
  25. Jo, Y.-J., H.-J. Lee, L.-S. Chang, and C.-H. Kim, 2018: Sensitivity study of the initial meteorological fields on the PM10 concentration predictions using CMAQ modeling. J. Korean Soc. Atmos. Environ., 33, 554-569 (in Korean with English abstract).
  26. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor. Climatol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  27. Kim, D.-Y., J.-Y. Kim, and J.-J. Kim, 2013: Mesoscale simulations of multi-decadal variability in the wind resource over Korea. Asia-Pac. J. Atmos. Sci., 49, 183-192, doi:10.1007/s13143-013-0019-9.
  28. Kim, J.-Y., D.-Y. Kim, J.-H. Oh, S. H. Kim, H.-G. Kim, Y.-H. Kang, J.-J. Kim, and C.-H. Cho, 2015: Sensitivity evaluation of surface wind simulations by surface drag parameterization and spatial resolution using WRF model. J. Wind Eng. Inst. Korea, 19, 77-83 (in Korean with English abstract).
  29. Kryza, M., M. Werner, A. J. Dore, M. Vieno, M. Blas, A. Drzeniecka-Osiadacz, and P. Netzel, 2012: Modelling meteorological conditions for the episode (December 2009) of measured high $PM_{10}$ air concentrations in SW Poland - Application of the WRF model. Int. J. Environ. Pollut., 50, 41-52, doi:10.1504/IJEP.2012.051179.
  30. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358, doi:10.1023/A:1019207923078.
  31. Laden, F., L. M. Neas, D. W. Dockery, and J. Schwartz, 2000: Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect., 108, 941-947. https://doi.org/10.1289/ehp.00108941
  32. Lang, J., S. Cheng, J. Li, D. Chen, Y. Zhou, X. Wei, L. Han, and H. Wang, 2013: A monitoring and modeling study to investigate regional transport and characteristics of $PM_{2.5}$ pollution. Aerosol Air Qual. Res., 13, 943-956, doi:10.4209/aaqr.2012.09.0242.
  33. Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 3408-3424. https://doi.org/10.1175/2008MWR2332.1
  34. Lee, J.-B., and D.-K. Lee, 2011: Impact of cumulus parameterization schemes with different horizontal grid sizes on prediction of heavy rainfall. Atmosphere, 21, 391-404 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.4.391
  35. Lee, J. G., and H. M. Sung, 2013: A WRF sensitivity study in precipitation amount over Yeongdong province to the choice of nesting methods: Case study. J. Korean Soc. Hazard Mitig., 13, 105-119, doi:10.9798/KOSHAM.2013.13.1.105 (in Korean with English abstract).
  36. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73-102. https://doi.org/10.1007/s10546-007-9221-6
  37. Lee, S.-H., S.-W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127-2143, doi:10.5194/acp-11-2127-2011.
  38. Lee, S.-H., H. Lee, S.-B. Park, J.-W. Woo, D.-I. Lee, and J.-J. Baik, 2016: Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: numerical investigation using a coupled WRF-VUCM model. Q. J. R. Meteorol. Soc., 142, 2562-2578, doi:10.1002/qj.2847.
  39. Lim, K.-S. S., J.-M. Lim, H. H. Shin, J. Hong, Y.-Y. Ji, and W. Lee, 2019: Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model. Meteorol. Atmos. Phys., 131, 975-985, doi:10.1007/s00703-018-0615-4.
  40. Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the joint urban 2003 field project. J. Appl. Meteor. Climatol., 45, 912-929. https://doi.org/10.1175/JAM2383.1
  41. Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Q. J. R. Meteorol. Soc., 123, 101-127. https://doi.org/10.1002/qj.49712353704
  42. McNally, D., 2009: 12km MM5 performance goals. 10th Annual AdHoc Meteorological Modelers Meeting, Boulder, CO, USA, Environmental Protection Agency, 46 pp.
  43. Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261-304. https://doi.org/10.1023/A:1016099921195
  44. Mass, C., and D. Ovens, 2010: WRF model physics: Problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, Boulder, CO, USA, NCAR.
  45. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397. https://doi.org/10.1023/A:1002463829265
  46. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  47. Mun, J. H., H. W. Lee, W. B. Jeon, and S.-H. Lee, 2017: Impact of meteorological initial input data on WRF simulation - Comparison of ERA-Interim and FNL data. J. Environ. Sci. Int., 26, 1307-1319, doi:10.5322/JESI.2017.26.12.1307.
  48. NCAR, 2014: What's the difference between FNL and GFS? National Center for Atmospheric Research [Available online at https://rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf].
  49. NIER, 2013: Example of air quality modeling report based on air quality modeling guidelines for establishing and evaluating national air policies. National Institute of Environmental Research, NIER-GP, 2013-037, 52 pp (in Korean).
  50. NIER, 2014: A study of accuracy improvement for national air quality forecasting (I). National Institute of Environmental Research, NIER-RP, 2014-305, 21 pp (in Korean).
  51. Ostro, B., R. Broadwin, S. Green, W.-Y. Feng, and M. Lipsett, 2006: Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environ. Health Perspect., 114, 29-33.
  52. Palmer, T. N., 2000: Predicting uncertainty in numerical weather forecasts. Int. Geophys., 83, 3-13. https://doi.org/10.1016/S0074-6142(02)80152-8
  53. Park, S.-H., J.-B. Jee, and C. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over Seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322, doi:10.14191/Atmos.2015.25.2.309 (in Korean with English abstract).
  54. Prabha, T. V., G. Hoogenboom, and T. G. Smirnova, 2011: Role of land surface parameterizations on modeling cold-pooling events and low-level jets. Atmos. Res., 99, 147-161, doi:10.1016/j.atmosres.2010.09.017.
  55. Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations - Part II. validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345-356. https://doi.org/10.1007/s00704-009-0143-8
  56. Sistla, G., N. Zhou, W. Hao, J.-Y. Ku, S. T. Rao, R. Bornstein, F. Freedman, and P. Thunis, 1996: Effects of uncertainties in meteorological inputs on urban airshed model predictions and ozone control strategies. Atmos. Environ., 30, 2011-2025. https://doi.org/10.1016/1352-2310(95)00268-5
  57. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+ STR, 125 pp.
  58. Son, J.-Y., J.-T. Lee, K.-H. Kim, K. Jung, and M. L. Bell, 2012: Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. Environ. Health Perspect., 120, 872-878, doi:10.1289/ehp.1104316.
  59. Soriano, C., O. Jorba, and J. M. Baldasano, 2004: One-way nesting versus two-way nesting: Does it really make a difference? In C. Borrego et al. Eds., Air Pollution Modeling and Its Application XV, Springer, 177-185 pp, doi:10.1007/0-306-47813-7_18.
  60. Srinivas, C. V., K. B. R. R. Hari Prasad, C. V. Naidu, R. Baskaran, and B. Venkatraman, 2016: Sensitivity analysis of atmospheric dispersion simulations by FLEXPART to the WRF-simulated meteorological predictions in a coastal environment. Pure Appl. Geophys., 173, 675-700, doi:10.1007/s00024-015-1104-z.
  61. Thunis, P., E. Georgieva, and A. Pederzoli, 2011: The DELTA tool and the benchmarking report template. Concept and Users' guide, Version 2, Joint Research Center, 31 pp.
  62. Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184-194. https://doi.org/10.1080/02723646.1981.10642213
  63. Woo, J.-W., J.-H. Lee, and S.-H. Lee, 2019: Quantitative analysis of random errors of the WRF-FLEXPART model for backward-in-time simulation over the Seoul metropolitan area. Atmosphere, 29, 551-566, doi:10.14191/Atmos.2019.29.5.551 (in Korean with English abstract).
  64. Zhang, Y., M. K. Dubey, S. C. Olsen, J. Zheng, and R. Zhang, 2009: Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO. Atmos. Chem. Phys., 9, 3777-3798, doi:10.5194/acp-9-3777-2009.
  65. Zhao, W., N. Zhang, J. Sun, and J. Zou, 2014: Evaluation and parameter-sensitivity study of a single-layer urban canopy model (SLUCM) with measurements in Nanjing, China. J. Hydrometeor., 15, 1078-1090, doi:10.1175/JHM-D-13-0129.1.