• Title/Summary/Keyword: temperature estimation

Search Result 1,637, Processing Time 0.028 seconds

Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material (Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가)

  • Kim, Jong Min;Kim, Woo Gon;Kim, Min Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

Inverse Brightness Temperature Estimation for Microwave Scanning Radiometer

  • Park, Hyuk;Katkovnik, Vladimir;Kang, Gum-Sil;Kim, Sung-Hyun;Choi, Jun-Ho;Choi, Seh-Wan;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.604-609
    • /
    • 2002
  • The passive microwave remote sensing has progressed considerably in recent years. Important earth surface parameters are detected and monitored by airborne and space born radiometers. However the spatial resolution of real aperture measurements is constrained by the antenna aperture size available on orbiting platforms and on the ground. The inverse problem technique is researched in order to improve the spatial resolution of microwave scanning radiometer. We solve a two-dimensional (surface) temperature-imaging problem with a major intention to develop high-resolution methods. In this paper, the scenario for estimation of both radiometer point spread function (PSF) and target configuration is explained. The PSF of the radiometer is assumed to be unknown and estimated from the observations. The configuration and brightness temperature of targets are also estimated. To do this, we deal with the parametric modeling of observation scenario. The performance of developed algorithms is illustrated on two-dimensional experimental data obtained by the water vapor radiometer.

  • PDF

The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Jo, Jongmin;Kim, Sungsoo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.

Estimation of Non-Working Day Considering Weather Factors in Construction Projects - Based on Estimation Periods for Improving the Forecast - (건설공사의 기후요소에 의한 작업불능일 산정기준에 관한 연구 - 예측성 향상을 위한 산정기간 비교분석 중심으로 -)

  • Lee Keun-Hyo;Kim Kyung-Rai;Shin Dong-Woo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.394-397
    • /
    • 2004
  • Working-day calculation with weather factors of construction-site has estimated wethout proper data. They usually estimate it with their own experience and intuition. It causes not only economic loss to time-adjustment but also conflict with each participants. Moreover, weather estimation becomes worse than before, due to tendency of recently weather change. So, in this paper we present optimal estimation method as assessment by period of the arithmetical mean methods. For that, we analyse characteristic of the regions and weather change of temperature and rainfall which affects time.

  • PDF

Speed and Flux Estimation for an Induction Motor Using a Parameter Estimation Technique

  • Lee Gil-Su;Lee Dong-Hyun;Yoon Tae-Woong;Lee Kyo-Beum;Song Joong-Ho;Choy Ick
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, an estimator scheme for the rotor speed and flux of an induction motor is proposed on the basis of a fourth-order electrical model. It is assumed that only the stator currents and voltages are measurable, and that the stator currents are bounded. There are a number of common terms in the motor dynamics, and this is utilized to find a simple error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming that the rotor speed is constant. Some stability properties are given on the basis of Lyapunov analysis. In addition, the rotor resistance, which varies with the motor temperature, can also be estimated within the same framework. The effectiveness of the proposed scheme is demonstrated through computer simulations and experiments.

Failure Zone Estimation from the correlation between the Temperature in Slope and the Soil Nail Strain (지중온도와 변형율과의 상관관계를 통한 활동영역의 추정)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.123-130
    • /
    • 2005
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Kimhae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. For instance, the zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists would not be relatively affected by the weathering process.

  • PDF

Modeling of Heat Transfer Equations for Estimation of Temperature Variations Inside the Oil Transport Pipe Line (원유 수송관 내부의 온도 변화 예측 을 위한 열전달 방정식의 모델링)

  • Jin, J.J.;Chung, H.T.;Bae, J.S.;Lee, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.300-303
    • /
    • 2008
  • In the present study, the simple form of the heat transfer equation were suggested to estimate the temperature variation inside the oil pipe in order to determine the thickness of the insulating materials to retain the working oils below the critical temperature. The conservation of the thermal energy at arbitrary time were modeled to one dimensional unsteady equation with the empirical formula or data. The calculating results for non-insulation case showed that the temperature were very sensitive to the thermal convection by the velocity of the external wind. For insulation case, the insulation material which has higher density and specific heat, lower thermal conductivity should be chosen with more brighter coloring outside the pipe in order to retain the working oils below the critical temperature.

  • PDF

Real Time Estimation in 1-Dimensional Temperature Distribution Using Modal Analysis and Observer (모드해석과 관측기를 이용한 1차원 온도분포의 실시간 예측)

  • An, Jung-Yong;Park, Yeong-Min;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.195-201
    • /
    • 2001
  • An inverse heat conduction problem(IHCP) arises when unknown heat fluxes and whole temperature field are to be found with temperature measurements of a few points. In this paper, observers are proposed as solution algorithm for the IHCP. A 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. Position of the heat source is estimated through test heat inputs and the autocorrelation among a few of temperature data. The modified Bass-Gura method is used to design a state observer to estimate the intensity of heat source and the whole temperature field of a 1-dimensional body. To verify the reliability of this estimator, analytic solutions obtained from the proposed method are compared.

A Study for 3D Temperature Analysis between sphere and rough surface with Measured Temperatures (구와 거친표면의 미끄럼 접촉 온도해석 및 실험에 관한 연구)

  • Han T-H;Lee S-D;Kim T-W;Cho Y-J
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.97-104
    • /
    • 2003
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. In this study to verify estimation of temperature rising, calculated temperatures were compared with measured temperatures. It is possible to calculate bulk and flash temperature.

  • PDF

A Study for Estimation of the Surface Temperature Rise Using the FVM and Semi-Infinite Solid Analysis (FVM과 반무한체 해석을 이용한 표면온도예측에 관한 연구)

  • 이상돈;김태완;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.260-266
    • /
    • 2001
  • The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. Several methods for calculating surface temperature have been devised. Several numerical methods have been used to predict the temperature rise of sliding surface. but those need much time to calculate. In this study to reduce the calculation time the hybrid method using both semi-infinite solid analysis and FVM was used. It is founded that the computing time of hybrid method was shorter than that of FVM.

  • PDF