• 제목/요약/키워드: temperature distribution model

검색결과 1,488건 처리시간 0.029초

Modeling of transient temperature distribution in multilayer asphalt pavement

  • Teltayev, Bagdat B.;Aitbayev, Koblanbek
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.133-152
    • /
    • 2015
  • Mathematical model has been developed for determination of temperature field in multilayer pavement and subgrade, which considers transfer of heat by conduction and convection, receiving of heat from total solar radiation and atmosphere emission, output of heat due to the emission from the surface of pavement. The developed model has been realized by the finite element method for two dimensional problem using two dimensional second order finite element. Calculations for temperature field have been made with the programme realized on the standard mathematical package MATLAB. Accuracy of the developed model has been evaluated by comparison of temperatures, obtained theoretically and experimentally. The results of comparison showed high accuracy of the model. Long-term calculation (within three months) has been made in pavement points in accordance with the data of meteorological station for air temperature. Some regularities have been determined for variation of temperature field.

대면적 전자빔 폴리싱 공정 시 발생하는 온도 분포 유한요소해석 연구 (Finite Element Analysis of Large-Electron-Beam Polishing-Induced Temperature Distribution)

  • 김지수;김진석;강은구;이석우;박형욱
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.931-936
    • /
    • 2013
  • Recently, the use of large-electron-beam polishing for polishing complex metal surfaces has been proposed. In this study, the temperature induced by a large electron beam was predicted using the heat transfer theory. A finite element (FE) model of a continuous wave (CW) electron beam was constructed assuming Gaussian distribution. The temperature distribution and melting depth of an SUS304 sample were predicted by changing electron-beam polishing process parameters such as energy density and beam velocity. The results obtained using the developed FE model were compared with experimental results for verifying the melting depth prediction capability of the developed FE model.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

복합재료 연료전지 스택의 열응력 해석 (Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model)

  • 전지훈;황운봉;엄석기;김수환;임태원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF

HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망 (Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model)

  • 이재호;백희정;조천호
    • 대기
    • /
    • 제23권4호
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.

가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구 (Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor)

  • 조상필;김호영;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF

화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 - (A Numerical Study of Smoke Movement by Fire In Atrium Space)

  • 노재성;유홍선;정연태
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

배전용 몰드변압기의 온도특성 파악을 위한 열유동해석 (Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System)

  • 김지호;이정근;이기식;이욱;이향범
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.