• Title/Summary/Keyword: temperature dependent parameters

Search Result 410, Processing Time 0.031 seconds

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity (변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석)

  • Song J. H.;Kim S. H.;Hahn H. Thomas;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

The study on emotion recognition by time-dependent parameters of autonomic nervous response (TDP(time-dependent parameters)를 적용하여 분석한 자율신경계 반응에 의한 감성인식에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Kim, Young-Joo;Woo, Jin-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.11 no.4
    • /
    • pp.637-644
    • /
    • 2008
  • Human emotion has been tried to be recognized by physiological measurements in developing emotion machine enabling to understand and react to user's emotion. This study is to find the time-dependent physiological measurements and their variation characteristics for discriminating emotions according to dimensional emotion model. Ten university students were asked to watch sixteen prepared images to evoke different emotions. Their subjective emotions and autonomic nervous responses such as ECG (electrocardiogram), PPG (photoplethysmogram), GSR (Galvanic skin response), RSP (respiration), and SKT(skin temperature) were measured during experiment. And these responses were analyzed into HR(Heart Rate), Respiration Rate, GSR amplitude average, SKT amplitude average, PPG amplitude, and PTT(Pulse Transition Time). TDPs(Time dependent parameters) defined as the delay, the activation, the half recovery and the full recovery of respective physiological signal in this study have been determined and statistically compared between variations from different emotions. The significant tendencies in TDP were shown between emotions. Therefore, TDP may provide useful measurements with emotion recognition.

  • PDF

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

Thermal Conductivities of Nanofluids (나노 유체(Nanofluids)의 열전도도)

  • Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.968-975
    • /
    • 2004
  • Nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

Thermal Conductivities of Nanofluids (나노 유체(Nanofluids)의 열전도도)

  • Jang, Seok-Pil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1388-1393
    • /
    • 2004
  • Investigators have been perplexed with the thermal phenomena behind the recently discovered nanofluids, fluids with unprecedented stability of suspended nanoparticles although huge difference in the density of nanoparticles and fluid. For example, nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

  • PDF

A novel model of a rotating nonlocal micropolar thermoelastic medium with temperature-dependent properties

  • Samia M. Said;Elsayed M. Abd-Elaziz;Mohamed I.A. Othman
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.429-434
    • /
    • 2024
  • In the current work, the effect of rotation and mechanical force on a nonlocal micropolar thermoelastic solid with temperature-dependent properties was discussed using Erigen's nonlocal thermoelasticity theory. The problem is resolved using Laplace transforms and Fourier series. For the nonlocal and local parameters, the physical fields have been illustrated. The numerical inversion approach is used to acquire the resulting fields in the physical domain. Based on numerical analysis, the effects of rotation, the modulus of elasticity's dependency on temperature, and nonlocal, mechanical force are examined on the physical fields.

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

  • Ahmad, A.;Ahmed, S.;Abbasi, F.M.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity as well as the temperature of the nanofluid and is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.