Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.4.385

Thermal Shock Tests and Thermal Shock Parameters for Ceramics  

Awaji, Hideo (King Mongkut's University of Technology Thonburi, Department Tool and Materials Engineering)
Choi, Seong-Min (Fuji Electric Corporation of America)
Publication Information
Abstract
Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.
Keywords
Thermal shock test; Thermal shock parameters; Brittle ceramics; Strength; Fracture toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Absi and J. C. Glandus, "Improved Method for Severe Thermal Shocks Testing of Ceramics by Water Quenching," J. Eur. Ceram. Soc., 24 2835-38 (2004).   DOI
2 F. Osterstock, I. Monot, G. Desgardin, and B. L. Mordike, "Influence of Grain Size on the Toughness and Thermal Shock Resistance of Polycystalline," J. Eur. Ceram. Soc., 16 687-94 (1996).   DOI
3 M. Enoki and T. Kishi, "Evaluation of Stochastic Microfracture Process of Particle Dispersed Composites," Mater. Trans., JIM, 37 [3] 399-03 (1996).   DOI
4 H. Tanaka, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Shock Test for Ceramics by a Water-Flow Cooling Method," J. Ceram. Soc. Jpn, Supplement ,112 [5] S299-04 (2004).
5 P. F. Becher, "Effect of Water Bath Temperature on the Thermal Shock of $Al_2O_3$," J. Am. Ceram. Soc., 64 C17-C18 (1981).
6 A. F. Emery and A. S. Kobayashi, "Transient Stress Intensity Factors for Edge and Corner Cracks in Quench-Test Specimens," J. Am. Ceram. Soc., 63 410-415 (1980).   DOI
7 S. Honda, S. Hayakawa, T. Nishikawa, and H. Awaji, "Water-Quench Thermal Shock Testing for Ceramic Disks," J. Ceram. Soc. Jpn, 108 [2] 166-71 (2000).   DOI
8 H. Tanaka, Y. Maki, K. Tsuboi, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Stresses in Porous Materials under Thermal Shock by Cooling Medium - Infiltration Effect on Thermal Stress Distributions -," J. Ceram. Soc. Jpn., 112 172-78 (2004).   DOI
9 D. P. H. Hasselman, E. P. Chen, and P. A. Urick, "Prediction of the Thermal Fatigue Resistance of Indented Glass Rods," Am. Ceram. Soc. Bull., 57 190-92 (1978).
10 F. Osterstock, "Contact Damage Submitted to Thermal Shock: a Method to Evaluate and Simulate Thermal Shock Resistance of Brittle Materials," Mater. Sci. and Enging., A168 41-44 (1993).
11 S. R. Choi and J. A. Salem, "Thermal Shock Behavior of Silicon Nitride Flexure Beam Specimens with Indentation Cracks," J. Am. Ceram. Soc., 77 [3] 833-38 (1994).   DOI
12 T. Andersson and D. J. Rowcliffe, "Indentation Thermal Shock Test for Ceramics," J. Am. Ceram. Soc., 79 [6] 1509-14 (1996).   DOI
13 S-K. Lee, J. D. Moretti, M. J. Readey, and B. R. Lawn, "Thermal Shock Resistance of Silicon Nitrides Using an Indentation-Quench Test," J. Am. Ceram. Soc., 85 [1] 279-81 (2002).
14 P. Pettersson, M. Johnsson and Z. Shen, "Parameters for Measuring the Thermal Shock of Ceramic Materials with an Indentation-Quench Method," J. Eur. Ceram. Soc., 22 1883-89 (2002).   DOI
15 R. Uribe and C. Baudín, "Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina," Am. Ceram. Soc., 86 846-50 (2003).   DOI
16 A. Kovalcikova, J. Dusza, and P. Sajgalik, "Thermal Shock Resistance and Fracture Toughness of Liquid-Phase-Sintered SiC-based Ceramics," J. Eur. Ceram. Soc., 29 2387-94 (2009).   DOI
17 G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 673-80 (2007).   DOI
18 M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara, "Microstructure and Mechanical Behavior of 3Y-TZP/Mo Nanocomposites Possessing a Novel Interpenetrated Intragranular Microstructure," J. Mater. Sci., 31 2849-58 (1996).   DOI
19 S. Sato, H. Awaji, and H. Akuzawa, "Evaluation of the Thermal Shock Fracture Toughness of Reactor Graphites by Arc Discharge Heating," Carbon, 16 103-09 (1978).   DOI
20 S. Sato, K. Sato, Y. Imamura, and J. Kon, "Determination of the Thermal Shock Resistance of Graphite by Arc Discharge Heating," Carbon, 13 309-16 (1975).   DOI
21 C. Schubert, H. A. Bahr, and H. J. Weiss, "Crack Propagation and Thermal Shock Damage in Graphite Disks Heated by Moving Electron Beam," Carbon, 24 [1] 21-28 (1986).   DOI
22 R. Benz, A. Naoumidis, and H. Nickel, "Thermal Shock Testing of Ceramics with Pulsed Laser Irradiation," J. Nucl. Mater., 150 128-39 (1987).   DOI
23 S. Akiyama, S. Amada, M. Shimada, and T. Yoshii, "Estimation of Thermal Shock Resistance of $Al_2O_3$ Ceramics by Laser Irradiation," JSME Int. J., Ser. A, 38 [4] 594-600 (1995).
24 S. Amada, W. Y. Nong, Q. Z. Min, and S. Akiyama, "Thermal Shock Resistance of Carbon-Carbon (C/C) Composites by Laser Irradiation Technique,"Ceram. Int., 25 61-67 (1999).   DOI
25 J-H. Kim, Y-S. Lee, D-H. Kim, N-S. Park, J. Suh, J-O. Kim, and S-I. Moon, "Evaluation of Thermal Shock Strength for Graphite Materials Using a Laser Irradiation Method," Mater. Sci. & Eng., A 387-389 385-89 (2004).   DOI   ScienceOn
26 G. C. Wei and J. Walsh, "Hot-Gas-Jet Method and Apparatus for Thermal-Shock Testing," J. Am. Ceram. Soc., 72 [7] 1286-89 (1989).   DOI
27 J. Lamon and D. Pherson, "Thermal Stress Failure of Ceramics under Repeated Rapid Heatings," J. Am. Ceram. Soc., 74 [6] 1188-96 (1991).   DOI
28 H. Awaji, S. Honda, and T. Nishikawa, "Thermal Shock Parameters of Ceramics Evaluated by Infrared Radiation Heating," JSME Int. J., Series A, 40 [4] 414-22 (1997).   DOI
29 G. A. Schneider and G. Petzow, "Thermal Shock Testing of Ceramics - A New Testing Method," J. Am. Ceram. Soc., 74 [1] 98-02 (1991).   DOI
30 H. Awaji and T. Endo, "Thermal Shock Fracture Testing for Float Glass by Infrared Radiation Technique (in Jpn)," J. Ceram. Soc. Jpn, 103 [9] 960-65 (1995).   DOI
31 T. Endo, Japanese Utility Model Registration Application No. 59-79600, March 31, 1984.
32 T. Endo, Japanese Patent Application No. 60-50437, March 15, 1985.
33 S.S. Manson, "Behavior of Materials Under Conditions of Thermal Stress," NACA TN 2933 317-50 (1953).
34 R. L. Coble and W. D. Kingery, "Effect of Porosity on Thermal Stress Fracture," J. Am. Ceram. Soc., 38 33-37 (1955).   DOI
35 Y. W. May and A. G. Atkins, "Fracture Toughness and Thermal Shock of Tool and Turbine Ceramics," J. Mater. Sci., 10 1904-19 (1973).
36 D. Lewis, "Comparison of Critical ${\Delta}T_c$ Values in Thermal Shock with the R Parameter," J. Am. Ceram. Soc., 63 713-714 (1980).   DOI
37 K. Anzai and H. Hashimoto, "Thermal Shock Resistance of Silicon Nitride," J. Mater. Sci., 12 2351-53 (1997).
38 S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity", pp.433-84, McGraw-Hill Book Co., New York, 1934.
39 H. Awaji, H-J. Xian, H. Tanaka, and S. Honda, "Water-Flow Cooling and Infrared Radiation Heating Techniques for Thermal Shock Test of Ceramics," pp. 557-60, Proc. sixth international congress on thermal stresses, May 26-29, Vienna, 2005.
40 S. Honda, T. Takahashi, S. Morooka, S. Zhang, T. Nishikawa, and H. Awaji, "Thermal Stress and Stress Intensity Factor Considering Temperature Dependent Material Properties (in Jpn)," J. Soc. Mater. Sci. Jpn, 46 1300-05 (1997) .   DOI
41 W. P. Rogers, A. F. Emery, R. C. Bradt, and A. S. Kobayashi, "Statistical Study of Thermal Fracture of Ceramic Materials in the Water Quench Test," J. Am. Ceram. Soc., 70 [6] 406-12 (1987).   DOI
42 T. Sakuma, U. Iwata, and H. Takaku, "Estimation of Thermal Shock Resistance of Ceramics (4th Report) (in Jpn)," Trans. JSME, 58A 1424-29 (1992).
43 W-J. Lee, Y. Kim, and E. D. Case, "The Effect of Quenching Media on the Heat Transfer Coefficient of Polycrystalline Alumina," J. Mater. Sci., 28 2079-83 (1993).   DOI
44 T. Nishikawa, T, Gao, M. Hibi, and M. Takatsu, "Heat Transmission during Thermal Shock Testing of Ceramics," J. Mater., Sci., 29 213-17 (1994).   DOI
45 R. Badaliance, D. A. Krohn, and D. P. H. Hasselman,"Effect of Slow Crack Growth on the Thermal-Stress Resistance of an $Na_2O-CaO-SiO_2$ Glass," J. Am. Ceram. Soc., 57 432-36 (1974).   DOI
46 H. Awaji, S. Honda, and T. Nishikawa, "Statistical Approach to Strength Degradation Analysis during Water Quenching," J. Ceram. Soc. Jpn, 106 [6] 551-54 (1998).   DOI
47 M. Oguma and T. Motomiya, "A BET Surface Area Measurement Technique for Evaluation of Crack Extension in Alumina Pellets Subjected to Thermal Shock," J. Ceram. Soc. Jpn, 97 778-82 (1989).   DOI
48 W. J. Lee and E. D. Case, "Thermal Fatigue in Polycrystalline Alumina," J. Mater. Sci., 25 5043-54 (1990).   DOI
49 M. Hefetz and S. I. Rokhlin, "Thermal Shock Damage Assessment in Ceramics Using Ultrasonic Waves," J. Am. Ceram. Soc., 75 [7] 1839-45 (1992).   DOI
50 D. N. Boccaccini, M. Romagnoli, P. Veronesi, M. Cannio, C. Leonelli, G. Pellacani, T. V. Husovic, and A. R. Boccaccini, "Quality Control and Thermal Shock Damage Characterization of High-Temperature Ceramics by Ultrasonic Pulse Velocity Testing," Int. J. Appl. Ceram.Technol., 4 [3] 260-68 (2007).   DOI
51 F. Mignard, C. Olagnon, and G. Fantozzi, "Acoustic Emission Monitoring of Damage Evaluation in Ceramics Submitted to Thermal Shock," J. Eur. Ceram. Soc., 15 651-53 (1995).   DOI
52 F. Mignard, C. Olagnon, M. Saadaoui, and G. Fantozzi, "Thermal Shock Behavior of a Coarse Grain Porous Alumina," J. Mater. Sci., 31 2437-41 (1996).   DOI
53 D. Sherman, "Alumina/NiCu Laminate under Thermal Shock up to 1000C: I, Experimental," J. Am. Ceram. Soc., 84 2819-26 (2001).   DOI
54 L. J. Vandeperre, A. Kristfferson, E. Carlsröm, and W. J. Clegg, "Thermal Shock of Layered Ceramic Structures with Crack-Deflecting Interfaces," J. Am. Ceram. Soc., 84 104-10 (2001).   DOI
55 K. Kokini, J. DeJonge, S. Rangaraj, and B. Beardsley, "Thermal Shock of Functionally Graded Thermal Barrier Coatings with Similar Thermal Resistance," Surface & Coatings Tech., 154 223-31 (2002).   DOI   ScienceOn
56 A. Kawasaki and R. Watanabe, "Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials," Eng. Fract. Mech., 69 1713-28 (2002).   DOI
57 V. R. Vedula, S. J. Glass, D. M. Saylor, G. S. Rohrer, W. C. Carter, S. A. Langer, and E. R. Fuller Jr., "Residual-Stress Predictions in Polycrystalline Alumina," J. Am. Ceram. Soc., 84 2947-54 (2001).   DOI
58 B-L. Wang, Y-W. Mai, and X-H. Zhang, "Thermal Shock Resistance of Functionally Graded Materials," Acta Mater., 52 4961-72 (2004).   DOI
59 G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji, "Thermal Shock Testing on Mullite/Mo FGM Disks Using an Infrared Radiation/Water Flow Technique," J. Ceram. Soc. Jpn, Supplement, 112 S286-S290 (2004).
60 G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji, "Properties of Multilayered Mullite/Mo Functionally Graded Materials Fabricated by Powder Metallurgy Processing," Mater. Chem. & Phys., 89 238-43 (2005).   DOI
61 T. K. Gupta, "Strength Degradation and Crack Propagation in Thermally Shocked $Al_2O_3$," J. Am. Ceram. Soc., 55 [5] 249-53 (1972).   DOI
62 A. G. Evans, "Microfracture from Thermal Expansion Anisotropy - I. Single Phase Systems," Acta Metallurgica, 26 1845-53 (1978).   DOI
63 A. Zimmermann, E. R. Fuller Jr., and J. Rödel, "Residual Stress Distributions in Ceramics," J. Am. Ceram. Soc., 82 3155-60 (1999).
64 H. Awaji, T. Matsunaga, and S-M. Choi, "Relation between Strength, Fracture Toughness, and Critical Frontal Process Zone Size in Ceramics," Mater. Trans., 47 [6] 1532-39 (2006).   DOI
65 K. Niihara, "New Design Concept of Structural Ceramics - Ceramic Nanocomposites-," J. Ceram. Soc. Jpn, 99 974-82 (1991).   DOI
66 H. Awaji, "Ceramic-Based Nanocomposites," "Handbook of Nanoceramics and their based Nanodevices, Vol. 2", pp. 231-251, Ed. by T-Y. Tseng and H. S. Nalwa, Am. Sci. Pub, Los Angeles, 2009.
67 K. T. Faber, M. D. Huang, and A. G. Evans, "Quantitative Studies of Thermal Shock in Ceramics Based on a Novel Test Technique," J. Am. Ceram. Soc., 64 [5] 296-301 (1981).   DOI
68 H. Okamura, "Senkei Hakairikigaku Nyuumon (Introduction to Linear Fracture Mechanics) (in Jpn)", p.76 , Baifukan, Tokyo, 1976.
69 S-M. Choi and H. Awaji, "Nanocomposites - a New Material Design Concept," Sci. & Tech. Advanced Mater., 6 2-10 (2005).   DOI
70 P. F. Becher, D. Lewis, K. R. Carman, and A. C. Gonzalez, "Thermal Shock Resistance of Ceramics: Size and Geometry Effects in Quench Tests," Ceram. Bull., 59 [5] 542-45 (1980).
71 D. Lewis, "Thermal Shock and Thermal Shock Fatigue Testing of Ceramics with the Water Quench Test," Fracture Mechanics of Ceramics, Vol. 5, pp. 487-96, ed. R. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, 1983.
72 Y. Mizutani, T. Nishikawa, T. Fukui, and M. Takatsu, "Thermal Shock Fracture of Ceramic Disk under Rapid Heating," J. Ceram. Soc. Jpn, 103 [5] 525-28 (1995).   DOI
73 D. P. H. Hasselman, "Figures-of-merit for the Thermal Stress Resistance of High-temperature Brittle Materials: a Review," Ceramurgia Int., 4 [4] 147-50 (1978).   DOI
74 F. Mignard, C. Olagnon, G. Fantozzi, P. Chantrenne, and M. Raynaud, "Thermal Shock behavior of a Coarse Grain Porous Alumina," J. Mater. Sci., 31 2131-38 (1996).   DOI
75 H. Awaji, T. Takahashi, N. Yamamoto, and T. Nishikawa, "Analysis of Temperature/Stress Distributions in Thermal Shocked Ceramic Disks in Relation to Temperature-Dependent Properties," J. Ceram. Soc., Jpn, 106 [4] 358-62 (1998).   DOI
76 M. Hamidouche, N. Bouaouadja, C. Olagnon, and G. Fantozzi, "Thermal Shock Behavior of Mullite Ceramic," Ceramics Int., 29 599-09 (2003).   DOI
77 A. G. Evans, M. Linzer, H. Johnson, D. P. H. Hasselman, and M. E. Kipp, "Thermal Fracture Studies in Ceramic Systems Using an Acoustic Emission Technique," J. Mater. Sci., 10 1608-15 (1975).   DOI
78 W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," J. Am. Ceram. Soc., 38 [1] 3-15 (1955).   DOI
79 R. W. Davidge and G. Tappin, "Thermal Shock and Fracture in Ceramics," Trans. British Ceram. Soc., 66 405-22 (1967).
80 D. P. H. Hasselman, "Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics," J. Am. Ceram. Soc., 52 [11] 600-04 (1969).   DOI
81 H. Awaji, "Thermal Shock Fracture Toughness by Infrared Radiation Heating Technique(in Jpn)," Trans. JSME, 62A [595] 700-06 (1996).
82 T. J. Lu and N. A. Fleck, "The Thermal Shock Resistance of Solids," Acta Mater., 46 [13] 4755-68 (1998).   DOI
83 M. Collin and D. Rowcliffe, "Analysis and Prediction of Thermal Shock in Brittle Materials," Acta Mater., 48 1655-65 (2000).   DOI   ScienceOn
84 T. Sakuma, U. Iwata, and H. Takaku, "Thermal Shock Resistance of Ceramics: A Novel Quenching Method and Non-Steady Heat Transfer Coefficients," in Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, pp. 537-44, Edited by J. F. Keffer, et al., Elsevier Science Pub. Co. ltd., 1991.
85 H. Awaji and S. Sato, "Stress Intensity Factor of an Edge Crack in a Disk and Thermal Shock Fracture Toughness (in Jpn)," Jpn. Soc. Str. & Fract. Mater., 13 78-85 (1978).
86 Y. Takeuchi and T. Furukawa, "Some Considerations on Thermal Shock Problems in a Plate," J. Appl. Mech., 48 [3] 113-18 (1981).   DOI
87 D. P. H. Hasselman, "Strength Behavior of Polycrystalline Alumina Subjected to Thermal Shock," J. Am. Ceram. Soc., 53 [9] 490-95 (1970).   DOI
88 J. P. Singh, D. P. H. Hasselman, and G. Ziegler, "Effect of Drop Height on Critical Temperature Difference (${\Delta}T_c$) for Brittle Ceramics Subjected to Thermal Shock by Quenching into Water," J. Am. Ceram. Soc., 66 [10] C194-95 (1983).   DOI
89 T. Sakuma, U. Iwata, H. Takaku, and N. Okabe, "Estimation of Thermal Shock Resistance of Ceramics (in Jpn)," Trans. JSME, 59A 131-36 (1993).
90 J. P. Singh, J. R. Thomas, and D. P. H. Hasselman, "Analysis of Effect of Heat-Transfer Variables on Thermal Stress Resistance of Brittle Ceramics Measured by Quenching Experiments," J. Am. Ceram. Soc., 63 [3-4] 140-44 (1980).   DOI
91 W. Dienst, H. Scholz, and H. Zimmermann, "Thermal Shock Resistance of Ceramic Materials in Melt Immersion Tests," J. Eur. Ceram. Soc., 5 365-70 (1989).   DOI
92 J. P. Singh, Y. Tree, and D. P. H. Hasselman, "Effect of Bath and Specimen Temperature on the Thermal Stress Resistance of Brittle Ceramics Subjected to Thermal Quenching," J. Mater. Sci., 16 2109-18 (1981).   DOI
93 W. P. Rogers and A. F. Emery, "Contact thermal Shock Test of Ceramics," J. Mater. Sci., 27 146-52 (1992).   DOI
94 J. Jung, A. Reck, and R. Ziegler, "The Compatibility of Alumina Ceramics with Liquid Sodium," J. Nuclear Mater., 119 339-50 (1983).   DOI
95 T. Sakuma, U. Iwata, and H. Takaku, "Estimation of Thermal Shock Resistance of Ceramics (in Jpn)," Trans. JSME, 58A 470-75 (1992).
96 W. O. Soboyejo, C. Mercer, J. Schymanski, and S. R. van der Laan, "Investigation of Thermal Shock in a High-Temperature Refractory Ceramics: A Fracture Mechanics Approach," J. Am. Ceram. Soc., 83 [6] 1309-14 (2001).
97 V. R. Vedula, D. J. Green, J. R. Hellmann, and A. E. Segall, "Test Methodology for the Thermal Shock Characterization of Ceramics," J. Mat. Sci., 33 5427-32 (1998).   DOI
98 F. Hugot and J. C. Glandus, "Thermal Shock of Alumina by Compressed Air Cooling," J. Eur. Ceram. Soc., 27 1919-25 (2007).   DOI
99 A. G. Tomba and A. L. Cavalieri, "Evaluation of the Heat Transfer Coefficient in Thermal Shock of Alumina Disks," Mater. Sci. and Eng., A276 76-82 (2000).
100 S. Kitaoka, Y. Matsudaira, C-H Chen, and H. Awaji, "Thermal Cyclic Fatigue Behavior of Porous Ceramics for Gas Cleaning," J. Am. Ceram. Soc., 87 906-13 (2004).   DOI
101 M. I. Nieto, R. Martínez, L. Mazerolles, and C. Baudín, "Improvement in the Thermal Shock Resistance of Alumina Through the Addition of Submicron-sized Aluminum Nitride Particles," J. Eur. Ceram. Soc., 24 2293-01 (2004).   DOI
102 M. Ishitsuka, T. Sato, T. Endo, and M. Shimada, "Thermal Shock Fracture Behavior of $ZrO_2$ Based Ceramics," J. Mater. Sci. Lett., 24 4057-61 (1989).   DOI
103 K. J. Konsztowicz, "Crack Growth and Acoustic Emission in Ceramics During Thermal Shock," J. Am. Ceram. Soc., 73 [3] 502-08 (1990).   DOI
104 S. Mezquita, R. Uribe, R. Moreno, and C. Baudin, "Influence of Mullite Additions on Thermal Shock Resistance of Dense Alumina Materials, Part 2: Thermal Properties and Thermal Shock Behavior," Brit. Ceram. Trans., 100 246-50 (2001).   DOI
105 K. Tagashira, T. Mikami, J. Okamura, T. Sasa, and M. Obata, "Thermal Shock Test of Ceramics by Helium Gas Cooling through a Narrow Slit," JSME Int. J., Series A, 45 [4] 612-19 (2002).   DOI
106 K. Niihara, J. P. Singh, and D. P. H. Hasselman, "Observations on the Characteristics of a Fluidized Bed for the Thermal Shock Testing of Brittle Ceramics," J. Mater. Sci., 17 2553-59 (1982).   DOI