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Abstract
As a way to account for the variability of the primary model parameters in the secondary modeling of microbial 

growth, three different regression approaches were compared in determining the confidence interval of the temper-
ature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped re-
gression with all the individual primary model parameter values; bootstrapped regression with average values at 
each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature 
dependences of converted parameters (log qo, μmax

1/2, log Nmax) of hypothetical initial physiological state, maximum 
specific growth rate, and maximum cell density in Baranyi’s model were subjected to the regression by quadratic, 
linear, and linear function, respectively. With an advantage of extracting the primary model parameters instanta-
neously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values 
were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating 
temperature conditions.
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INTRODUCTION

Controlling the microbial load of refrigerated perish-
able foods is of prime importance for assuring safety 
and quality. Shelf life monitoring and control based on 
microbial criteria are essential for the assured quality and 
safety of the products. However, determination and con-
trol of shelf life based on the direct measurement of mi-
crobial count is very difficult because it is time consum-
ing and requires expertise not readily available, and thus 
has limited practical applications. Even though there 
have been attempts to measure the microbial quality by 
indirect rapid detection and analysis of physical and 
chemical indexes, they are still in infancy, not allowing 
their introduction to shelf life control (1).

On the other hand, prediction of microbial quality un-
der different conditions has emerged as a useful techni-
que for estimating efficacy of microbial controls and for 
predicting shelf life (2,3). The microbial growth kinetics 
applicable to food shelf life management should have 
the capacity to estimate the microbial number of relevant 
spoilage organisms over time under a variety of environ-
mental conditions frequently met during food dis-
tribution and storage. The microbial growth model, both 
the primary and secondary model, is adopted to satisfy 
the purpose and requirements (2,3): primary model refers 

to the mathematical function describing the microbial 
quality index as a function of time, and its parameters 
defined for the designated or relevant conditions repre-
sent the rate and degree of microbial growth or spoilage. 
The secondary model incorporates the effect of environ-
mental and compositional factors (e.g. temperature, wa-
ter activity, and pH) on the parameters of the primary 
model. Temperature is the most important independent 
variable to be considered in microbial growth modeling 
for shelf life management. Rigorous models of predicted 
microbiology have been proposed to handle dynamic 
storage conditions, particularly during fluctuating tem-
perature conditions (4-11).

Because there are uncertainty and variation in micro-
bial growth data used for modeling, the estimations de-
rived from the model should have variability and needs 
to be provided with confidence intervals for the parame-
ters and microbial growth levels (12,13). The nature of 
variability is dealt with in the distribution of model pa-
rameters, which are obtained by regression or curve fit-
ting procedures. In order to deal with the variability 
problem, randomization techniques such as the Monte 
Carlo method and bootstrap are often applied (11,14,15). 
The stochastic analysis of microbial growth modeling 
has been conducted at a single constant temperature 
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Table 1. Primary model parameters for aerobic bacterial growth on seasoned soybean sprouts (11)
Temperature 

(oC)
Parameters of Baranyi’s model (Eqs. 1～2)

log qo log No μmax log Nmax

0
5

10
15

-4.014
-1.344
4.414
18.60

(-5.357, -3.135)
(-1.598, -1.018)
( 1.351, 9.960)
( 13.05,  23.11)

4.249 (4.173, 4.328)
4.245 (4.145, 4.316)
4.118 (4.082, 4.153)
4.235 (4.151, 4.444)

2.383 (1.996, 3.031)
2.955 (2.785, 3.110)
4.061 (3.974, 4.142)
5.967 (4.982, 6.201)

7.703 (7.659, 7.754)
8.719 (8.653, 8.786)
9.695 (9.655, 9.732)
10.25 (10.15, 10.40)

Values are average with 95% bootstrap confidence interval in bracket.

successfully by the Monte Carlo method to predict the 
microbial counts at any storage time (16). Analysis of 
temperature effects on the primary model parameters in 
the secondary model requires another step of regression 
which also generates uncertainty and variation in its 
parameters. Therefore, the prediction of microbial growth 
under different temperature or dynamic storage con-
ditions achieved by two stage modeling has difficulty 
in dealing with variability and distribution of the model 
parameters. Even though some prediction models have 
the capacity to give the confidence band of prediction 
under several different temperatures, they do not consid-
er the variability of the primary model parameters ob-
tained from experimental data which have variability and 
uncertainty by nature (6,13,17). Almonacid-Merino et al. 
(18) obtained the Arrhenius equation parameters from 
non-isothermal experiments using the bootstrap re-
gression technique, but did not try to estimate the band 
of estimated microbial growth. To our knowledge, there 
have been no intensive treatments of the confidence in-
terval of the predicted microbial growth obtained through 
two stages of primary and secondary modeling. 

This study therefore aims to compare different ap-
proaches of analyzing temperature effects on the quality 
of the predicted band of microbial growth and find an 
appropriate one for practical applications. Fluctuating 
temperature conditions were tested to validate the pro-
posed method. 

MATERIALS AND METHODS

Microbial growth data and primary model parameters
The total aerobic bacterial counts and their primary 

model parameter distribution reported by Lee et al. (11) 
for four different temperatures (0, 5, 10, and 15oC) were 
used for this study (Table 1, Fig. 1). As discussed by 
Lee et al. (11), total aerobic bacterial growth was as-
sumed to be useful as a general criterion for practical  
shelf life determination, but a similar approach can be 
applied to growth of specific strains of spoilage bacteria 
on defined media which have been used as criteria in 
many shelf life studies (1). One thousand parameter sets 

of Baranyi and Roberts (19) microbial growth model 
(Equations 1 and 2) determined from bootstrapped mean 
counts at each temperature were used to analyze the tem-
perature effect in three different methods described 
below.

q
dt
dq

maxμ=  (1)

N)
N

N1)(
q1

q(
dt
dN

max
max −

+
μ=

 (2)

where q is the normalized concentration of an unknown 
substance critically needed for cell growth and represents 
the physiological state of the cell population, μmax is the 
maximum specific growth rate (1/day), N is the micro-
bial count in cfu/g at time t, and Nmax is the maximum 
cell density in cfu/g. The microbial growth model of 
Equations 1 and 2 has two explicit parameters of μmax 
and Nmax and two implicit parameters of qo and No repre-
senting q and N at the initial time, respectively.

Secondary model parameter estimation
Mathematical functions used by Lee et al. (11) were 

adopted for the analysis of temperature effect on the pri-
mary model parameters (qo, No, μmax, and Nmax); log qo 
was described by quadratic Equation 3, log No was indif-
ferent with regard to temperature, μmax was given in a 
square root model (Equation 4), and log Nmax was ex-
pressed by a simple linear Equation 5 (Fig. 1):

log qo = ao + a1 T + a2 T2 (3)

Tbb 1omax +=μ (4)

log Nmax = co + c1 T (5)

where ao-a2, bo-b1, and co-c1 are coefficients of the re-
spective equations and T is temperature (oC).

Different regression techniques were applied to obtain 
the coefficients of Equations 3～5 and their correspond-
ing variable distributions in the temperature range of 0～
15oC. First, the bootstrapping regression method with 
randomized resampling of residuals (20) was adopted for 
all the primary model parameter values at four temper-
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Fig. 1. The primary model parameters of aerobic bacterial 
growth on seasoned soybean sprouts as a function of tem-
perature with respective 95% confidence intervals. ○: 
average value; ――: 95% confidence interval from boot-
strapped regression using all the individual parameter val-
ues (Method 1); ----: 95% confidence interval from boot-
strapped regression using average parameter value at each 
temperature (Method 2); ━━: regression line of 2.5% and 
97.5% percentile values (Method 3). Vertical bars are 95% 
bootstrap confidence intervals of the original primary mod-
el parameters at each temperature.

atures (1000 values for each temperature) (Method 1). 
At the first stage of the calculation, the best-fit co-
efficient estimates were obtained by the least squares 
method. And the modified residuals were calculated for 
the n parameter values (n=4000) using the following 
equation:

i

ii
i

h1
ŷyr
−

−
= (6)

where yi is the primary model parameter datum (log qo,
maxμ , or log Nmax), iŷ  is the y value calculated from 

the best fit model, and hi is given by i-th diagonal ele-
ments of hat matrix H:

H = T (TTT)-1 TT (7)
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for Equations 4 and 5.
Next we set i

*
i TT =  for i=1,2, ….n. And 

*
iε  was sam-

pled randomly from (ri-r̄), …. (rn-r̄), with r̄ being the 
average r value, and then used to produce *

iy  as: 

*
ii

*
i ŷy ε+= (8)

Finally least squares regression was fitted to ),y,T( *
1

*
1

)y,T( ......, *
n

*
n , giving estimates of another set of co-

efficients and the y estimate at any temperatures based 
on the corresponding coefficient set. This procedure was 
repeated 1000 times to produce 1000 values of log qo, 

maxμ , or log Nmax for any temperature of interest. The 
ranges from 2.5% percentile value to 97.5% percentile 
for each y value (log qo, maxμ , or log Nmax) for the 
temperature range of interest were obtained as a measure 
of confidence interval.

Another version of the bootstrapped regression pre-
sented above was tried for average primary model pa-
rameter values of log qo, maxμ , or log Nmax given at 
four temperatures (Method 2). Again 1000 values of log 
qo, maxμ , or log Nmax at any temperature were obtained 
and used to identify the 95% confidence band by the 
same method as above.

Finally simple linear or polynomial regression accord-
ing to Equations 3, 4, or 5 was conducted for average 
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Table 2. Regression equations for describing the 2.5% and 97.5% percentile values of the primary model parameters
     Parameter Equations with coefficients (Eqs. 3～5) R2

log qo
Regression curve
2.5% percentile curve
97.5% percentile curve

log qo = -3.7468 – 0.2554 T + 0.1152 T2

log qo = -4.8787 – 0.0275 T + 0.0794 T2

log qo = -3.4693 + 0.1392 T + 0.1103 T2

0.995
0.976
0.995

μmax
1/2

Regression line
2.5% percentile line
97.5% percentile line

μmax
1/2 = 1.5607 + 0.0541 T

μmax
1/2 = 1.4094 + 0.0556 T

μmax
1/2 = 1.6294 + 0.0504 T

0.908
0.997
0.871

log Nmax
Regression line
2.5% percentile line
97.5% percentile line

log Nmax = 7.7985 + 0.1726 T
log Nmax = 7.7573 + 0.1697 T
log Nmax = 7.8356 + 0.1777 T

0.984
0.980
0.991

primary model parameter values, 2.5% percentile values 
and 97.5% percentile values of the primary model pa-
rameters at four temperatures (Method 3). The area sur-
rounded by the regression lines of 2.5% and 97.5% per-
centile values was provided as another measure of the 
confidence band of the primary model parameters as 
function of temperature. 

Comparison of the different secondary modeling 
methods

Three different regression methods described above 
were first compared in estimating the primary model pa-
rameters at different temperatures with their confidence 
bands. The respective secondary models were then used 
to estimate the microbial counts under static and dynam-
ic temperature conditions: the primary model parameters 
of log qo, maxμ , and log Nmax obtained from the models 
were supplied to the differential Equations 1 and 2, 
which were solved for given conditions and then com-
pared with experimental data. As for initial microbial 
counts of log No for the estimation at constant temper-
ature conditions where the primary model parameters 
were derived, 2.5% percentile and 97.5% percentile val-
ues shown in Table 1 were supplied into the solution 
as lower and higher bounds, respectively. The con-
fidence band of the estimated microbial count was ob-
tained from the substitution of the lower and higher 
boundary values of the primary model parameters at 95% 
confidence interval. As a reference for microbial count 
estimation band at constant temperatures, 1000 sets of 
the original model parameters of Lee et al. (11) were 
also supplied to Equations 1 and 2 to produce 1000 
growth curves, from which their 95% confidence band 
was extracted. For the simulation under dynamic temper-
ature conditions, lag time and initial qo value was calcu-
lated by using the method reported by Lee et al. (11). 
As the initial confidence limit values of log No for the 

estimation at dynamic temperature conditions, 95% per-
centile values of the experimental bacterial counts were 
supplied for the solution.

RESULTS AND DISCUSSION

Microbial growth model parameters
The best-fit lines or curves obtained for log qo, maxμ , 

or log Nmax in all three methods were the same and co-
incided with the very narrow central confidence band 
lines from Method 1 (bootstrapped regression using all 
the individual parameter values) in Fig. 1. The regression 
coefficients of the regression curve or line were the same 
as given in Table 2, but the R2 value was different be-
tween methods. In regression statistics it is accepted that 
the same number of data number at each independent 
variable gives the same regression curve for different 
data treatments but with different R2 (21). Fig. 1 also 
compares the 95% confidence intervals for the primary 
model parameters of log qo, maxμ , and log Nmax from 
three regression methods. The bootstrapped regression 
using all the individual primary parameter values 
(Method 1) gave the narrowest band merging to almost 
a single line. The bootstrapped regression using the aver-
age parameter values (Method 2) resulted in a much wid-
er confidence band. This bootstrapped regression using 
average parameter values does not take into consid-
eration the variability of the model parameters given for 
each temperature, but assumes their constant distribution 
for calculating the regression coefficient and confidence 
interval: this seems to be a drawback of this method.

Another confidence band between two regression lines 
of 2.5% and 97.5% percentile values (Method 3) shows 
a wider range than that of Method 1. The band of log 
qo was the widest among the methods while the bands 
for maxμ  and log Nmax values were narrower compared 
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Fig. 2. The estimated 95% confidence band of aerobic bacterial counts on seasoned soybean sprouts at 0, 5, 10, and 15oC. 
○: average value; ―+―: 95% percentile of the microbial counts estimated with 1000 sets of the original primary model 
parameters; ――: average estimation based on the best-fit primary model parameters; ――: use of the parameters from boot-
strapped regression with all the individual parameter values (Method 1); ----: use of the parameters from bootstrapped regression 
with average parameter value at each temperature (Method 2); ━━: use of the parameters from regression line of 2.5% and 
97.5% percentile values (Method 3).

to those from Method 2. These bands were shown to 
be highly dependent on the spread or variability of the 
primary model parameters and seem to comprise most 
of the average primary model parameter values as shown 
in Fig. 1. This type confidence band has the advantage 
to being able to be described as a mathematical function 
(Table 2), which makes easy its application to dynam-
ically changing temperature conditions.

Estimated microbial growth band under constant and 
fluctuating temperatures 

The difference in confidence bands of the primary 
model parameters in the secondary model is expected 
to result in different confidence intervals of estimated 
microbial growth at their substitution into Equations 1 
and 2, which may be useful for evaluating the regression 
method for applicability to the microbial quality and 
shelf life estimation under various temperature conditions. 
Therefore the primary model parameters at the limits of 
the confidence bands were adopted for simulation of mi-
crobial growth under constant temperature conditions, 
whose original data were used for determining the pri-
mary model parameters (Table 1) reported by Lee et al. 
(11). Fig. 2 compares the different methods for estimat-
ing microbial growth at 0, 5, 10, and 15oC. As a refer-

ence for comparison, the 95% percentile of the microbial 
counts estimated from 1000 sets of the original primary 
model parameters was also given in the same figure.

A general overview on Fig. 2 tells that there is a much 
narrow band of confidence when the primary model pa-
rameters are obtained from Method 1 (bootstrapped re-
gression with all the individual parameter values) while 
the broadest band results from Method 2 (bootstrapped 
regression with four average values at four different tem-
peratures). The difference between these two methods 
is greater at low temperatures of 0 and 5oC. Even though 
the use of the bootstrapped regression with all the in-
dividual parameter values can give the estimated band 
close to the experimental data of average microbial 
counts, the band does not comprise some experimental 
data at 5 and 10oC. It does not overlap either with 95% 
percentile band of the microbial growth which was esti-
mated with 1000 sets of the original primary model pa-
rameters at 5oC.

On the other hand, when the regression lines of 2.5% 
and 97.5% percentile values (Method 3) were used as 
bounds of the primary model parameters for the simu-
lation, the estimated microbial count bands were much 
broader than those both from Method 1 and from 1000 
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growth curve sets given by the original primary model 
parameters, but were generally thinner than those from 
Method 2. The bands also covered all the experimental 
data points for four temperatures, which would provide 
a safe margin in estimating the shelf life. 

The simple parametric regression with average values 
at experimental temperatures (Method 2) is the most usu-
al practice in secondary modeling, which has also been 
widely used for estimating the confidence intervals for 
the secondary model parameters (9,22). The procedure 
is simple but does not consider the variability of the 
microbial count data in the primary modeling. Nonpara-
metric bootstrapping in the regression of the secondary 
model with average values at experimental temperatures 
does not take into account the variability of the primary 
modeling procedure, and thus still has the same limi-
tation as the simple parametric regression. As shown in 
Fig. 2 its confidence in the estimation was very limited 
with a wide band. On the other hand, the bootstrapped 
regression with all the primary model parameter values 
at different temperatures (Method 1) does consider the 
variation of primary model parameters and produces 
higher confidence on the secondary model parameters, 
resulting in a narrow band of estimation. However, it 
does have the limitation of not fully covering the varia-
bility in the actual experimental data. Method 3 using 
the regression lines of 2.5% and 97.5% percentile values 
as bounds of the primary model parameters is a sim-
plified approach for handling the apparent variation of 
primary model parameters through the temperature range 
of interest, and is understood as an empirical treatment. 
Being different from two other nonparametric boot-
strapping methods of regression (Methods 1 and 2), it 
can be easily adopted in simulation of dynamic temper-
ature condition.

The confidence bands of microbial estimation from 
regression procedures mean the region having a 95% 
chance of containing the true estimation (21), and are 
often understood as confidence intervals of the estimated 
means (12). In attaining the lowest limit of confidence 
band, this study applied the lower bound values (2.5% 
percentile) simultaneously for log qo, log No, maxμ , and 
log Nmax values, and also the upper bound values (97.5% 
percentile) for the highest confidence limit of all the pa-
rameters, which is an exaggeration and would have re-
sulted in a wider band. Similar approaches have been 
made for estimating microbial spoilage of fish exposed 
to non-isothermal condition by Koutsoumanis (17). For 
true confidence band, correlation matrix would be re-
quired but it cannot be determined exactly for this kind 

of complex system. Thus the attained band of the esti-
mated microbial growth is somewhat wider, and is un-
derstood as a 95% confidence band having some safe 
margin.

While narrower bands may give more confidence on 
the estimation, there are high possibilities that the esti-
mation does not cover the actual data of occurrence. To 
our current knowledge, there is no prefect method for 
estimating the microbial count with its confidence limit 
for diverse temperature conditions. More appropriate or 
improved stepwise regression methods in the primary 
and secondary modeling need to be developed taking ac-
count of theoretical validity and practical application. As 
shown above, Method 3 using regression lines of 95% 
band values of the original primary model parameters 
could give the reliable and consistent prediction covering 
the real outcome of the event. Lower temperatures of 
0 and 5oC with longer lag time resulted in a much wider 
confidence band: accurate prediction of the lag time 
would contribute to narrowing the band and improving 
the estimation, but it is not easily made at present due 
to its complicated dependence on several factors such 
as environmental conditions, cell growth stage, initial 
microbial load, etc. (23). Use of the regression line bands 
expressed as mathematical functions (Table 2) has an 
additional advantage of being easily applied to the dy-
namic temperature condition.

When regression lines of 2.5% and 97.5% percentile 
values given in Table 2 were used for predicting micro-
bial growth under dynamic temperature conditions, we 
obtained confidence bands covering or close to the ex-
perimental data (Fig. 3). As shown in Fig. 3A, having 
a long lag time based on the estimation by using best-fit 
parameters (due to initial low temperature period) re-
sulted in a wide confidence band. Some deviations in 
Fig. 3B might have been caused by sample variability 
and simplified model assumptions, as was discussed by 
Lee et al. (11). Even with some deviation, the estimation 
band is more useful compared to point estimation pro-
viding a safe margin. While the accuracy and distribution 
of the microbial model parameters primary and secon-
dary are influenced by the consistency in the measure-
ment locations, scattering of experimental data, and re-
gression method (16,24), their ability to represent or de-
scribe the variability and uncertainty in the real world 
is thought to be strongly dependent on consistency 
among the samples and environmental variables. Projec-
tion of modeling onto the real world should be possible 
only on the basis of close proximity between experimen-
tal conditions and practices of the food storage and 
distribution. More data and experience are required to 
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Fig. 3. Two sets (A & B) of estimated confidence bands of 
microbial growth on seasoned soybean sprouts under dynam-
ically changing food temperatures. ●: experimental microbial 
data. Thick solid lines for microbial count show estimated mi-
crobial growth band of 95% confidence while thin line is the 
estimation based on the best-fit parameter set. Vertical bars 
indicate standard deviations of microbial count data.

produce a solid and reproducible picture of the microbial 
spoilage of perishable foods. 

CONCLUSION

From the comparison of several different regression 
methods for describing the temperature effect on micro-
bial spoilage, regression lines of 2.5% and 97.5% per-
centile values showed the capability to account for ex-
perimental data of microbial growth under constant and 
fluctuating temperature conditions. The method has the 
advantage of extracting the primary model parameters 
instantaneously at any temperature, which is required for 
predicting the band of microbial growth under dynamic 
temperature conditions.
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