• 제목/요약/키워드: temperature cycles

Search Result 881, Processing Time 0.033 seconds

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

The Electrical properties of Al/TiN/Ti Contact at Submicron contact(1) (Al/TiN/Ti 전극의 Submicron contact에서의 전기적특성(1))

  • Lee, Cheol-Jin;Eom, Moon-Jong;Ra, Yong-Choon;Sung, Man-Young;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1013-1015
    • /
    • 1995
  • The electrical properties of Al/TiN/Ti contact according to post anneal ins conditions are investigated at submicron contacts. $N^+$ contact resistance increases with increasing alloy temperature while $P^+$ contact resistance slightly decreases. The contact tentage current increases wi th increasing alloy temperature for both $N^+$ and $P^+$ contacts. The contact resistance and leakage current of $N^+$ contact increases with increasing alloy tide. $P^+$ contact resistance decreases with increasing alloy time but $P^+$ contact tentage current increases. The contact resistance and contact leakage current increases with increasing alloy cycles for both $N^+$ and $P^+$ contacts.

  • PDF

Performance Comparison of Four-Parameter Correlation Equations of the Enthalpy of Vaporization

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • A few commonly used correlation equations of the enthalpy of vaporization essential to the analysis of refrigeration cycles are reviewed. A new four-parameter correlation equation is proposed assuming that the enthalpy of vaporization could be represented with a linear form of the temperature and an additional function which slowly decreases as the temperature increases. It is not a common practice to measure the enthalpy of vaporization by experiment; therefore, performance of the new correlation is examined using numeric data from the ASHRAE tables for 22 pure substance refrigerants. The new correlation equation and other existing ones are fitted to the data optimizing the root mean squared deviation. All data points are weighted equally and NBP (normal boiling point) is used as a fixed point since the NBP is important for refrigeration application. The new four-parameter equation yields an average absolute deviation of 0.05% for 22 refrigerants which is smaller than those of other four-parameter equations, such as Guermouche-Vergnaud (0.08%), Aerebrot (0.13%), Radoz-Lyderson (0.08%), and Somayajulu four-parameter equation (0.08%).

Evaluation of Several Parameters of in situ Polymerase Chain Reaction (ISPCR) to Reduce the Leakage of Amplificants from Cells

  • Lee, Jae-Yung;Auh, Chung-Kyoon;George W. Jordan
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.70-76
    • /
    • 2002
  • Proviral DNAs from HIV-1-infected CD4+ T cells (Molt/LAV cells) were amplified and detected in infected individual cells using polymerase chain reaction and in rifu hybridization. In this in situ PCR, three parameters were considered to achieve effective amplification and retention of amplificants inside the cells by making high molecular weight PCR products intracellularly, forming agarose matrix against the cells, and maintaining the appropriate PCR temperature profile. Over the cycles of ampliHcationl tailed primers with complementary overhanging sequences at their 5' sides manufactured high molecular weight products by using short primary products as a repeating unit. Agarose matrix could prevent the diffusion of the amplificants from the cells. Use of Thermanox coverslip inside the PCR tube offered target cells a similar temperature profile to that of conventional PCR in solution.

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

Polarization Characteristics of SBN Thin Film by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법에 의한 SBN 박막의 분극특성)

  • Kim, Jin-Sa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1175-1177
    • /
    • 2011
  • The SBN thin films were deposited on Pt/Ti/$SiO_2$/Si and p-type Si(100) substrate by rf magnetron sputtering method using $Sr_{0.7}Bi_{2.3}Nb_2O_9$ ceramic target. SBN thin films deposited were annealed at 600~800[$^{\circ}C$] by furnace in oxygen atmosphere during 40min. The polarization characteristics have been investigated to confirm the possibility of the SBN thin films for the application to destructive read out ferroelectric random access memory. The maximum remanent polarization and the coercive voltage are 0.6[${\mu}C/cm^2$], 1.2[V] respectively at annealing temperature of 800[$^{\circ}C$]. The leakage current density was the $2.57{\times}10^{-6}[A/cm^2]$ at an applied voltage of 5[V] at annealing temperature of 650[$^{\circ}C$]. Also, the fatigue characteristics of SBN thin films did not change up to $10^8$ switching cycles.

Electrical Properties with Annealing Temperature of SBN Thin Film (SBN 박막의 열처리온도에 따른 전기적인 특성)

  • Kim, Jin-Sa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1083-1086
    • /
    • 2010
  • The $Sr_{0.7}Bi_{2.3}Nb_2O_9$ thin films were deposited on Si substrate using RF magnetron sputtering method. And the SBN thin films were annealed at 650~800$[^{\circ}C$]. The surface rougness showed about 0.42[nm] in annealed thin film at $650[^{\circ}C$]. The dielectric constant(150) of SBN thin film was obtained by annealing temperature above $700[^{\circ}C$]. The voltage dependence of dielectric loss showed a value within 0.02 in voltage ranges of -10~+10[V]. The dielectric constant characteristics showed a stable value with the increase of frequency. Also, the SBN thin films annealed at $750[^{\circ}C$] showed a fatigue-free characteristics up to $1.0\times10^8$ cycles.

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training (하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF

Computer Simulation of Solidification Process in the Gravity Die Casting

  • Choi, J.K.;Kim, D.O.;Hong, C.P.
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.39-48
    • /
    • 1989
  • A basic three dimensional thermal model has been developed to simulate the solidification sequence for gravity die casting process. The finite difference method was used to analyze the solidification process during all the casting cycles. The prediction of die temperature in the quasi-steady state was analyzed by the boundary element method. The influence of die cooling on the heat flow in the cast/mold system was also investigated. Predictions of the computer simulation on temperature profiles and location of shrinkage defects were in good agreement with those observed in experimental die castings. Models of computer simulation which is developed by this work can be useful for the design and process control of die casting.

  • PDF

Design & system construction of insulation on the traction motor for EMU (철도차량용 견인전동기의 절연설계 및 절연시스템 구성)

  • 왕종배;홍선호;조연옥;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.194-197
    • /
    • 2001
  • Traction motors driven by high speed switching inverters is demanded higher operating temperature, severe duty cycles, higher starting current, frequent voltage transients and finally severe environmental exposure. For applications to inverter duty, traction motors needs a special insulation system, which has characteristics of increased bond strength, lower operating temperature and higher turn-to-turn insulation. In this paper, design considerations and manufacturing procedure of 200 Class insulation system with polyimde(Kapton) main insulation and silicone resin VPI process on the traction motor for EMU will be reviewed. And performance test and long life evaluation test which prove stability and long life evaluation test which prove stability and reliability of insulation system for traction motor will be introduced.

  • PDF