DOI QR코드

DOI QR Code

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling

열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성

  • Yang, In-Hwan (Department of Civil Engineering, Kunsan National University) ;
  • Park, Ji-Hun (Department of Civil Engineering, Kunsan National University)
  • Received : 2020.11.19
  • Accepted : 2020.12.06
  • Published : 2020.12.30

Abstract

In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

본 연구에서는 열에너지 저장시스템의 중요한 요소인 저장 매체에 관한 연구를 수행하였다. 열에너지 저장 매체로써 콘크리트는 열적 및 역학적 특성이 우수하며 저렴한 비용으로 인해 다양한 이점을 갖는다. 또한, 강섬유가 혼입된 초고강도 콘크리트는 고인성 및 고강도 특성으로 인해 고온 노출에 우수한 내구성을 나타내며, 강섬유의 높은 열전도율은 축열 및 방열에 유리한 영향을 미친다. 초고강도 콘크리트의 온도분포 특성을 파악하기 위하여 콘크리트 블록을 제작하고 일정한 열사이클을 적용하여 가열실험을 수행하였다. 열유체 흐름에 의한 열전달을 위하여 열전달 파이프를 콘크리트 블록 중심부에 매립하였다. 또한, 열전달 파이프 형상에 따른 온도분포 특성을 비교하기 위하여 핀의 유무에 따라 원형 파이프 및 종방향 핀 부착 파이프를 설정하였다. 열사이클에 따른 온도분포 특성을 분석하고, 이를 토대로 시간에 따른 열에너지 및 누적 열에너지를 산정하여 비교 분석하였다. 열사이클이 반복될수록 강섬유 혼입 초고강도 콘크리트는 고온에 대하여 안정화를 나타내었다. 또한, 온도분포 및 열에너지 산정 결과를 통해 축열 성능을 보유한 것으로 판단되며, 열에너지 저장 매체 역할을 수행할 수 있는 재료로 기대된다.

Keywords

References

  1. Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R. (2018). A comprehensive review of state-of-the-art concentrating solar power(CSP) technologies: current status and research trends, Renewable and Sustainable Energy Reviews, 91, 987-1018. https://doi.org/10.1016/j.rser.2018.04.097
  2. John, E.E., Hale, W.M., Selvam, R.P. (2011). Development of a high-performance concrete to store thermal energy for concentrating solar power plants, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, 523-529.
  3. Laing, D., Steinmann, W.D., Tamme, R., Richter, C. (2006). Solid media thermal storage for parabolic trough power plants, Solar Energy, 80, 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  4. Laing, D., Lehmann, D., FiB, M., Bahl, C. (2009). Test results of concrete thermal energy storage for parabolic trough power plants, Journal of Solar Energy Engineering, 131(4), 041007. https://doi.org/10.1115/1.3197844
  5. Laing, D., Bahl, C., Bauer, T., Fiss, M., Breidenbach, N., Hempel, M. (2012). High-temperature solid-media thermal energy storage for solar thermal power plants, Proceedings of the IEEE, 100(2), 516-524.
  6. Laing, D., Zunft, S. (2015). Using concrete and other solid storage media in thermal energy storage(TES) systems, Advances in Thermal Energy Storage Systems, 65-86.
  7. Salomoni, V.A., Majorana, C.E., Giannuzzi, G.M., Miliozzi, A., Maggio, R.D., Girardi, F., Mele, D., Lucentini, M. (2014). Thermal storage of sensible heat using concrete modules in solar power plants, Solar Energy, 103, 303-315. https://doi.org/10.1016/j.solener.2014.02.022
  8. Skinner, J.E., Strasser, M.N., Brown, B.M., Selvam, R.P. (2014). Testing of high-performance concrete as a thermal energy storage medium at high temperatures, Journal of Solar Energy Engineering-Transactions of The Asme, 136(2), 021004. https://doi.org/10.1115/1.4024925
  9. Tamme, R., Laing, D., Steinmann, W.D. (2003). Advanced thermal energy storage technology for parabolic trough, Journal of Solar Energy Engineering, 126, 794-800. https://doi.org/10.1115/1.1687404
  10. Vigneshwaran, K., Sodhi, G.S., Muthukumar, P., Guha, A., Senthilmurugan, S. (2019). Experimental and numerical investigations on high temperature cast steel based sensible heat storage system, Applied Energy, 251, 113322. https://doi.org/10.1016/j.apenergy.2019.113322