• Title/Summary/Keyword: temperature compensation

Search Result 575, Processing Time 0.027 seconds

Temperature Compensation of NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 센서의 온도 보상)

  • Park, Jung-Min;Park, Young-Hwan;Yi, Seung-Hwan;Park, Jeong-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.81-82
    • /
    • 2005
  • 본 논문에서는 두 개의 오목 반사경으로 형성된 광 공동 구조의 비문산 적외선 (NDIR) 가스센서를 제작하였다. 증폭비는 18,000 배, 램프 off 시간은 3초로 일정하게 하고 펄스 modulation 시간을 200ms에서 600ms까지 변화시켰을 때. 300ms에서 가장 효율적인 출력신호를 확보할 수 있었다. 그리고 $5^{\circ}C$에서 $45^{\circ}C$까지 $10^{\circ}C$ 간격으로 온도를 변화시키면서 이산화탄소의 농도를 0ppm에서 2000ppm까지 증가시켰다. 이때, 약 400mV의 전압변화가 있었다. 온도가 상승함에 따라 0ppm에서의 출력전압은 감소하는 양상을 나타내었다. 또한 온도변화 대비 출력특성과의 상관성 해석을 통하여 온도 보상 방법을 고안하였으며, 본 연구에서 제작한 센서모듈의 응답시간은 약 30초였다.

  • PDF

Compensation of Variation from Long-Term Spectral Measurement for Non-invasive Blood Glucose in Mouse by Near-Infrared Spectroscopy (근적외분광분석법을 이용한 생쥐꼬리에서의 비침습 혈당 정량시 장기간 측정에 따른 변이 요인의 보정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • Non-invasive blood glucose measurement from mouse tail was performed by near-infrared (NIR) spectroscopy. Three groups; normal, type I diabetes (insulin dependent diabetes mellitus, IDDM), type II diabetes (non-insulin dependent diabetes mellitus, NIDDM) group, were studied over a 10 weeks period with the collection of near-infrared (NIR) spectra. Spectral variations from long-term measurement (10 weeks) from dramatic and nonlinear changes in the optical properties of the live tissue sample were compensated by chemometrics techniques such as principle component analysis (PCA) and partial least squares (PLS) regression. The effect from mouse body temperature changes on NIR spectral data was also considered. This study showed that the compensation of variations from long-term measurement and temperature changes improved calibration accuracy of non-invasive blood glucose measurement.

A Frequency Stable and Tunable Optoelectronic Oscillator Using an Optical Phase Shifter and a Phase-shifted Fiber Bragg Grating

  • Wu, Zekun;Zhang, Jiahong;Wang, Yao
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.634-641
    • /
    • 2022
  • A frequency stable and tunable optoelectronic oscillator (OEO) incorporating an optical phase shifter and a phase-shifted fiber Bragg grating (PS-FBG) is designed and analyzed. The frequency tunability of the OEO can be realized by using a tunable microwave photonic bandpass filter consisting of a PS-FBG, a phase modulator. The optical phase compensation loop is used to compensate for the phase variations of the RF signal from the OEO by adjusting an optical phase shifter. Simulation results demonstrate that the output RF signals of the OEO can be tuned in a frequency range of 118 MHz to 24.092 GHz. When the ambient temperature fluctuates within ±3.9 ℃, the frequency drifts of the output RF signals are less than 68 Hz, the side-mode suppression ratios are more than 69.39 dB, and the phase noise is less than -92.49 dBc/Hz at a 10 kHz offset frequency.

A Study on Possibility of Improvement of MIR Brightness Temperature Bias Error of KOMPSAT-3A Using GEOKOMPSAT-2A (천리안2A호를 이용한 다목적실용위성3A호 중적외선 밝기 온도 편향오차 개선 가능성 연구)

  • Kim, HeeSeob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.977-985
    • /
    • 2020
  • KOMPSAT-3A launched in 2015 provides Middle InfraRed(MIR) images with 3.3~5.2㎛. Though the satellite provide high resolution images for estimating bright temperature of ground objects, it is different from existing satellites developed for natural science purposes. An atmospheric compensation process is essential in order to estimate the surface brightness temperature from a single channel MIR image of KOMPSAT-3A. However, even after the atmospheric compensation process, there is a brightness temperature error due to various factors. In this paper, we analyzed the cause of the brightness temperature estimation error by tracking signal flow from camera physical characteristics to image processing. Also, we study on possibility of improvement of MIR brightness temperature bias error of KOMPSAT-3A using GEOKOMPSAT-2A. After bias compensation of a real nighttime image with a large bias error, it was confirmed that the surface brightness temperature of KOMPSAT-3A and GEOKOMPSAT-2A have correlation. We expect that the GEOKOMPSAT-2A images will be helpful to improve MIR brightness temperature bias error of KOMPSAT-3A.

Sensorless Control of a Permanent Magnet synchronous Motor with Compensation of the Parameter Variation (영구자석 동기전동기의 상수변동을 보상한 센서리스 제어)

  • 양순배;조관열;홍찬희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • A sensorless control of a PM synchronous motor with the compensation of the motor parameter variation is presented. The rotor position is estimated by using the d-axis and q-axis current errors between the real system and motor model of the position estimator. The stator resistance is measured at low speeds when the motor changes its rotating direction and the variation of the stator resistance and back emf constant caused by the temperature variation is compensated. The gains in the position estimator are also adapted according to the motor speeds.

Real-time Estimation and Compensation of Thermal Error for the Machine Origin of Machine Tools (공작기계 원점 열변형오차의 실시간 규명 및 보상제어)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.148-153
    • /
    • 1998
  • In order to control thermal deformation of machine origin of machine tools due to internal and external heat sources, the real-time compensation system has been developed. First, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining center through the measurement of deformation data and temperature data of specific points on the machine tool. Thermocouples and gap sensors are used respectively for measurement. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Secondly, work origin shift method were developed by implementing digital I/O interface board between CNC controller and IBM-PC. The work origin shift method is to shift the work origin by the compensation amounts which is calculated by pre-established GMDH model. From the experimental result, thermal deformation of machine origin was reduced to below $\pm$5${\mu}{\textrm}{m}$.

  • PDF

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

Modified Low-Votlage CMOS Bandgap Voltage Reference with CTAT Compensation (개선된 CTAT 보상을 가지는 저전압 CMOS Bandgap Voltage Reference)

  • Kim, Jae-Bung;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.753-756
    • /
    • 2012
  • In this paper, a modified low-votlage CMOS bandgap voltage reference with CTAT compensation is presented. The proposed structure doesn't use PTAT current. The proposed structure is more simple than the existing structure and doesn't use the eighteen BJT. The modified low-votlage CMOS bandgap voltage reference with CTAT compensation has been successfully verified in a standard 0.18um CMOS process. The simulation results have confirmed that, with the minimum supply voltage of 1.25V, the output reference voltage at 549mV has a temperature coefficient of 12$ppm/^{\circ}C$ from $0^{\circ}C$ to $100^{\circ}C$.