• 제목/요약/키워드: temperature coefficient of resistance (TCR)

검색결과 114건 처리시간 0.024초

초고온용 다결정 3C-SiC 마이크로 압력센서의 제작 (Fabrication of polycrystalline 3C-SiC micro pressure sensors for hightemperature applications)

  • 정귀상
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.31-35
    • /
    • 2010
  • High temperature micro pressure sensors were fabricated by using polycrystalline 3C-SiC piezoresistors grown on oxidized SOI substrates by APCVD. These have been made by bulk micromachining under $1{\times}1mm^2$ diaphragm and Si membrane thickness of $20{\mu}m$. The pressure sensitivity of implemented pressure sensors was 0.1 mV/$V{\cdot}bar$. The nonlinearity and the hysteresis of sensors were ${\pm}0.44%{\cdot}FS$ and $0.61%{\cdot}FS$. In the temperature range of $25^{\circ}C{\sim}400^{\circ}C$ with 5 bar FS, TCS (temperature coefficient of sensitivity), TCR (temperature coefficient of resistance), and TCGF (temperature coefficient of gauge factor) of the sensor were -1867 ppm/$^{\circ}C$, -792 ppm/$^{\circ}C$, and -1042 ppm/$^{\circ}C$, respectively.

CNT 필름 전기화학 센서의 온도 의존 특성에 관한 연구 (Temperature-Dependent Characteristics of Carbon Nanotubes-Film-Based Electrochemical Sensor)

  • 노재하;안형수;안상수;이창한;이상태;이문진;서동민;장지호
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.163-167
    • /
    • 2022
  • In this study, we investigated a carbon nanotube (CNT) film sensor to detect hazardous and noxious substances distributed in seawater. The response change of the sensor was studied according to environmental temperature, and its temperature coefficient of resistance (TCR, α) was measured. The temperature of the CNT film (~50 ㎛) was in the range of 20-50 ℃, and αCNT was calculated to be -0.0011 %/ ℃. We experimentally confirmed that the CNT film had a smaller TCR value than that of the conventional sensor. Therefore, we investigated the response change of the CNT sensor according to temperature. The CNT sensor showed a relatively small error of approximately 2.3 % up to 30 ℃, which is within the temperature range of the seawater of the Korean Peninsula. However, when the temperature exceeded 40 ℃, the error in the CNT sensor increased by more than 5.2 %. We fabricated a metal oxide (ITO, indium-tin-oxide) film and compared its performance with that of the CNT sensor. The ITO sensor showed an error of >12.5 % at 30 ℃, indicating that in terms of the stability of the sensor to temperature, the CNT film sensor has superior performance.

3C-SiC 마이크로 히터의 제작과 그 특성 (Fabrication of 3C-SiC micro heaters and its characteristics)

  • 정귀상;정재민
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

열형 마이크로센서용 백금박막형 미세발열체의 제작과 그 특성 (Fabrication of Pt Thin-film Type Microheater for Thermal Microsensors and Its Characteristics)

  • 정귀상;홍석우
    • 한국전기전자재료학회논문지
    • /
    • 제13권6호
    • /
    • pp.509-513
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it deposited by reactive sputtering and rf magnetron sputtering respectively were analyzed with annealing temperature and time by four point probe SEM and XRD. Under annealing conditions of 100$0^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin-film and the sheet resistivity and the resistivity of Pt thin-film deposited on it were 0.1288 Ω/ and 12.88 $\mu$$\Omega$.cm respectively. We made Pt resistance pattern on SiO$_2$/Si substrate by life-off method and fabricated Pt thin-film type microheater for thermal microsensors by Pt-wire Pt-paste and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$ we estimated TCR(temperature coefficient of resistance) and resistance ratio of thin-film type Pt-RTD(resistance thermometer device). We obtained TCR value of 3927 ppm/$^{\circ}C$ close to the bulk Pt value. Resistance values were varied linearly within the range of the measurement temperature. The thermal characteristics of fabricated thin-films type Pt micorheater were analyzed with Pt-RTD integrated on the same substrate. The heating temperature of Pt microheater could be up to 40$0^{\circ}C$ with 1.5 watts of the heating power.

  • PDF

Formation of nickel oxide thin film and analysis of its electrical properties

  • 노상수;서정환;이응안;이선길;박용준
    • 센서학회지
    • /
    • 제14권1호
    • /
    • pp.52-55
    • /
    • 2005
  • Ni oxide thin films with thermal sensitivity superior to Pt and Ni thin films were formed through annealing treatment after Ni thin films were deposited by a r.f. magnetron sputtering method. Resistivity values of Ni oxide thin films were in the range of $10.5{\mu}{\Omega}cm$ to $2.84{\times}10^{4}{\mu}{\Omega}cm$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation from 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of $0{\sim}150^{\circ}C$. Because of the high linear TCR and resistivity characteristics, Ni oxide thin films exhibit much higher sensitivity to flow and temperature changes than pure Ni thin films and Pt thin films.

고정밀 레이저 가공 기술을 이용한 PRT 제작 및 특성 분석 (Fabrication and Analysis of Characteristics of PRT using High-fine Laser Trimming Technology)

  • 노상수;서정환;정귀상;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.46-52
    • /
    • 2003
  • In this paper, we fabricated PRT(platinum resistance thermometers) with the trimming technology using high fine laser system. U. V.(wavelength: 355nm) laser was mainly used for adjusting Pt thin films resistors to 100Ω at 0$^{\circ}C$. Internationally, the accepted A-class tolerance of temperature sensor is ${\pm}$0.06Ω at 0$^{\circ}C$. according to DIN EN 60751. The width of trimmed lines was about 10$\mu\textrm{m}$ and the best trimming conditions of Pt thin films were power : 37mW, frequency : 200Hz and bite size:1.5$\mu\textrm{m}$. And 96 resistors, fabricated by photolithography and etching process, have 79∼90Ω and 91∼102Ω as the proportion of 45.7% and 57.3%, respectively. As result of sitting Pt thin films resistors to the target value(109.73Ω at 25$^{\circ}C$), 82.3% of all resistors had the tolerance within ${\pm}$0.03Ω and the others(17.7%) were within ${\pm}$0.06Ω of A-class tolerance. The PRTs which wore fabricated in this research had excellent characteristics as follows; high accuracy, international standard TCR(temperature coefficient of resistance) value, long-term stability, wide temperature range, good linearity and repeatability, rapid response time, etc.

내환경성이 우수한 고온.고정밀용 압력센서의 개발 (Development of a High Temperature and Exactitude Pressure Sensors for Superior Environmental Characteristics)

  • 서정환;백명숙;임창섭
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.13-22
    • /
    • 2002
  • This paper presents characteristics of CrOx thin-film Strain gauge pressure sensors, which were deposited on SUS630 diaphragm by DC reactive magnetron sputtering in an argon-Oxide atmosphere(Ar-(10%)$O_2$). The optimized condition of CrOx thin-film strain gauges were thicknessrange of 2500$\AA$ and annealing condition ($350^{\circ}C$, 3 hr) in Ar-10 %$O_2$deposition atmosphere. Under optimum conditions, the CrOx thin-films for strain gauge is obtained a high resistivity, $\rho$=156.7$\mu$$\Omega$cm, a low temperature coefficiect of resistance, TCR=-86 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal, 15. The output sensitivity of pressure sensor obtained is 2.46㎷/V and the maximum non-linearity is 0.3%FS and hysteresis is less than 0.2%FS. The output characteristics of pressure transmitter obtained is 4~20㎃ and total accuracy is less than $\pm$0.5%FS. In those conclusions, CrOx thin film pressure sensors is quite satisfactory for many applications in industrial electronics.

  • PDF

Ni-Cr계 합금을 이용한 정밀 박막저항체의 제조 및 특성 (Manufacture of Precision Thin film Resistors using Ni-Cr Alloy and Their Properties)

  • 이영화;박세일;김국진;임영언
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.52-57
    • /
    • 2006
  • Precision thin film resistors using evanohm R alloy were fabricated by do magnetron sputtering method. The physical and electrical properties of the resistors were studied after treatment of thermal annealing. The crystallization of the film was increased as the annealing temperature increase. Diffusion and oxidation of Cr and Al elements were occurred into the film surface. The minimum TCR values of 10.46 ppm/$^{\circ}C$ and 10.65 ppm/$^{\circ}C$ were measured at the annealing temperatures of $200^{\circ}C$ and $300^{\circ}C$, respectively. We are conducting additional studies to improve characteristics of our resistors for practical device application.

크로질화박막 스트레인 게이지의 특성 (Characteristics of Chromiun Nitride Thin-film Strain Guges)

  • 정귀상;김길중
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.134-138
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$nd annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF

고감도 박막형 스트레인 게이지의 제작 (Fabrication of High-sensitivity Thin-film Type Strain-guges)

  • 정귀상;서정환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.135-141
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by OC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$ and annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF