DOI QR코드

DOI QR Code

Temperature-Dependent Characteristics of Carbon Nanotubes-Film-Based Electrochemical Sensor

CNT 필름 전기화학 센서의 온도 의존 특성에 관한 연구

  • Noh, Jaeha (Major of Electronic Materials Engineering, Korea and Maritime Ocean University) ;
  • Ahn, Hyung Soo (Major of Electronic Materials Engineering, Korea and Maritime Ocean University) ;
  • An, Sangsu (Major of Electronic Materials Engineering, Korea and Maritime Ocean University) ;
  • Lee, Changhan (Major of Electronic Materials Engineering, Korea and Maritime Ocean University) ;
  • Lee, Sangtae (Department of offshore plant management, Korea and Maritime Ocean University) ;
  • Lee, Moonjin (Maritime Safety and Environmental Research Division, KRISO) ;
  • Seo, Dongmin (Maritime Safety and Environmental Research Division, KRISO) ;
  • Chang, Jiho (Major of Electronic Materials Engineering, Korea and Maritime Ocean University)
  • 노재하 (한국해양대학교 전자소재공학과) ;
  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 안상수 (한국해양대학교 전자소재공학과) ;
  • 이창한 (한국해양대학교 전자소재공학과) ;
  • 이상태 (한국해양대학교 해양플랜트 운영학과) ;
  • 이문진 (선박해양플랜트연구소 해양안전환경연구본부) ;
  • 서동민 (선박해양플랜트연구소 해양안전환경연구본부) ;
  • 장지호 (한국해양대학교 전자소재공학과)
  • Received : 2022.04.06
  • Accepted : 2022.05.19
  • Published : 2022.05.31

Abstract

In this study, we investigated a carbon nanotube (CNT) film sensor to detect hazardous and noxious substances distributed in seawater. The response change of the sensor was studied according to environmental temperature, and its temperature coefficient of resistance (TCR, α) was measured. The temperature of the CNT film (~50 ㎛) was in the range of 20-50 ℃, and αCNT was calculated to be -0.0011 %/ ℃. We experimentally confirmed that the CNT film had a smaller TCR value than that of the conventional sensor. Therefore, we investigated the response change of the CNT sensor according to temperature. The CNT sensor showed a relatively small error of approximately 2.3 % up to 30 ℃, which is within the temperature range of the seawater of the Korean Peninsula. However, when the temperature exceeded 40 ℃, the error in the CNT sensor increased by more than 5.2 %. We fabricated a metal oxide (ITO, indium-tin-oxide) film and compared its performance with that of the CNT sensor. The ITO sensor showed an error of >12.5 % at 30 ℃, indicating that in terms of the stability of the sensor to temperature, the CNT film sensor has superior performance.

Keywords

Acknowledgement

이 논문은 2022년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구(위험유해물질(HNS)사고 관리기술개발)이다. (D11502119H480000120) 이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구이다. (P0012451, 2022년 산업전문인력역량강화사업)

References

  1. K. F. Lei, K. F. Lee, and S. I. Yang, "Fabrication of carbon nanotube-based pH sensor for paper-based microfluidics", Microelectron. Eng., Vol. 100, pp. 1-5, 2012. https://doi.org/10.1016/j.mee.2012.07.113
  2. X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y. Chang, and Q. Wang, "Carbon Nanotube DNA Sensor and Sensing Mechanism", Nano Lett., Vol. 6, No. 8, pp. 1632-1636, 2006. https://doi.org/10.1021/nl060613v
  3. J. Y. Yoon and B. Kim, "Lab-on-a-Chip Pathogen Sensors for Food Safety", Sensors, Vol. 12, No. 8, pp. 10713-10741, 2012. https://doi.org/10.3390/s120810713
  4. Y. R. Kim, T. W. Kim, M. H. Son, S. W. Oh, and M. J. Lee, "A Study on Prioritization of HNS Management in Korean Waters", J. Korean Soc. Mar. Environ. Saf., Vol. 21, No. 6, pp. 672-678, 2015. https://doi.org/10.7837/kosomes.2015.21.6.672
  5. D. Ko, J. Choi, J. Seo, J. Noh, S. Lee, J. Jung, and J. Chang, "Chemical sensing properties of indium-tin-oxide (ITO) printed films fabricated on biodegradable plastics", AIP Adv., Vol. 10, No. 4, pp. 045228(1)- 045228(6), 2020. https://doi.org/10.1063/1.5141018
  6. H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, and L. Sun, "Graphene-Based Sensors for Human Health Monitoring", Front. Chem., Vol. 7, pp. 1-26, 2019. https://doi.org/10.3389/fchem.2019.00001
  7. A. S. Berdinsky, Y. V. Shevtsov, A. V. Okotrub, S. V. Trubin, L. T. Chadderton, D. FINK, and J. Lee, "Sensor properties of fullerene films and fullerene compounds with iodine", Chem. Sustain. Dev., Vol. 8, Vol. 14, pp. 141-146, 2000.
  8. M. I. Bodnarchuk, M. V. Kovalenko, S. Pichler, G. Fritz-Popovski, G. Hesser, and W. Heiss, "Large-Area Ordered Superlattices from Magnetic Wustite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting", ACS Nano, Vol. 4, No. 1, pp. 423-431, 2010. https://doi.org/10.1021/nn901284f
  9. P. P. Prosini, C. Cento, M. Carewska, and A. Masci, "Electrochemical performance of Li-ion batteries assembled with water-processable electrodes", Solid State Ion., Vol. 274, pp. 34-39, 2015. https://doi.org/10.1016/j.ssi.2015.02.012
  10. M. Wang, Z. Wang, X. Gong, and Z. Guo, "The intensification technologies to water electrolysis for hydrogen production - A review", Renew. Sust. Energ. Rev., Vol. 29, pp. 573-588, 2014. https://doi.org/10.1016/j.rser.2013.08.090
  11. S. Lee, H. Moon, Y. Choi, and D. K. Yoon, "Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea", Sustainability, Vol. 10, No. 2, pp. 519(1)-519(21), 2018. https://doi.org/10.3390/su10020519
  12. J. Noh, S. An, C. Lee, J. Chang, S. Lee, M. Lee, and D. Seo, "Investigation on the Printed CNT-Film-Based Electrochemical Sensor for Detection of Liquid Chemicals", Sensors, Vol. 21, No. 15, pp. 5179(1)-5179(10), 2021.
  13. A. Naeemi and J. D. Meindl, "Physical Modeling of Temperature Coefficient of Resistance for Single- and Multi-Wall Carbon Nanotube Interconnects", IEEE Electron Device Lett., Vol. 28, No. 2, pp. 135-138, 2007. https://doi.org/10.1109/LED.2006.889240
  14. Levinshtein M, Rumyantsev S, and Shur M, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996.
  15. B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, "Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer", Infrared Phys. Technol., Vol. 57, pp. 8-13, 2013. https://doi.org/10.1016/j.infrared.2012.10.006
  16. Q. Li, S. Luo, Y. Wang, and Q. M. Wang, "Carbon based polyimide nanocomposites thin film strain sensors fabricated by ink-jet printing method", Sens. Actuator. A Phy., Vol. 300, p. 111664, 2019. https://doi.org/10.1016/j.sna.2019.111664
  17. M. C. Hsu and G. B. Lee, "Carbon nanotube-based hot-film and temperature sensor assembled by optically-induced dielectrophoresis", IET Nanobiotechnol., Vol. 8, No. 1, pp. 44-50, 2014. https://doi.org/10.1049/iet-nbt.2013.0040
  18. A. O. Horvath and L. S. Greenberg, The Working Alliance: Theory, Research, and Practice, John Wiley and Sons, New York, pp. 1-295, 1994.
  19. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner's Guide to Cyclic Voltammetry", J. Chem. Educ., Vol. 95, No. 2, pp. 197-206, 2018. https://doi.org/10.1021/acs.jchemed.7b00361
  20. R. Chandrasekharan, L. Zhang, V. Ostroverkhov, S. Prakash, Y. Wu, Y. R. Shen, and M. A. Shannon, "High-temperature hydroxylation of alumina crystalline surfaces", Surf. Sci., Vol. 602, No. 7, pp. 1466-1474, 2008. https://doi.org/10.1016/j.susc.2008.02.009
  21. J. Ederth, P. Heszler, A. Hultaker, G. Niklasson, and C. Granqvist, "Indium tin oxide films made from nanoparticles: models for the optical and electrical properties", Thin Solid Films, Vol. 445, No. 2, pp. 199-206, 2003. https://doi.org/10.1016/S0040-6090(03)01164-7
  22. A. Tschope, "Grain size-dependent electrical conductivity of polycrystalline cerium oxide I. Experiments", Solid State Ion., Vol. 139, No. 3-4, pp. 255-265, 2001. https://doi.org/10.1016/S0167-2738(01)00678-6