• Title/Summary/Keyword: temperate

Search Result 1,079, Processing Time 0.025 seconds

Effect of Different Seasons on the Performance of Grey Giant Rabbits under Sub-Temperate Himalayan Conditions

  • Bhatt, R.S.;Sharma, S.R.;Singh, Umesh;Kumar, Davendra;Bhasin, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • An experiment was conducted on 190 progeny (winter -74; summer -59; rainy -57) of 12 Grey Giant rabbits (10 female +2 males), to assess the effect of different seasons in a year, on their reproductive, growth and productive performances along with feed efficiency, under sub-temperate Himalayan conditions. The daily meteorological attributes recorded during winter (October to March), summer (April to June) and rainy (July to September) seasons, and analysed were minimum and maximum temperature, relative humidity and rainfall. Various biological parameters recorded were doe weights at mating and kindling, litter size at birth, litter weight at birth, kit mortality, litter size at weaning, litter weight at weaning, weekly body weight up to 98 d and weaner mortality. Individual weight gains, dressing percentages, meat weights, liver weights, raw-pelt weights, processed pelt weights and processed pelt areas at slaughter on d 84 and 98, respectively were also recorded. The feed and fodder compositions and their nutritive values during different seasons were also analysed. Average ambient temperature during winter, summer and rainy seasons were $13.2{\pm}2.8$, $22.4{\pm}3.7$ and $24.8{\pm}2.3^{\circ}C$, respectively. The average relative humidity and total rainfall for winter, summer and rainy seasons were $68.9{\pm}1.5$% and $48{\pm}26.6$mm, $66.3{\pm}4.8$% and $125.6{\pm}56.8$ mm, and $77.3{\pm}1.3$% and $116.3{\pm}90.4$ mm, respectively. The weight of doe at mating and kindling, litter size at birth, litter weight at birth and litter size at weaning were comparatively higher whereas litter weight at weaning was significantly (p<0.05) higher during winter as compared to summer and rainy seasons. The kit mortality was significantly (p<0.05) higher during winter while the weaner mortality was significantly (p<0.05) higher during rainy season. At 84 d, the live weight per doe, slaughter weight, dressing percentage and liver weight were significantly (p<0.05) higher during winter than summer and rainy. Similarly, the gain in weight and meat weight at 84 and 98 d were significantly (p<0.05) higher during winter. The weight of raw pelt and processed pelt were recorded significantly (p<0.05) higher during winter while no difference in the area of processed pelts during different seasons could be observed. No difference in the biological performance could be observed between sexes in any of the seasons. Roughage analysis revealed comparatively higher crude protein percent and lower crude fibre percent during summer and rainy seasons than in winter. The roughage dry matter intake was comparatively higher during summer and rainy seasons vis-a-vis constant amount of concentrate supplied during all the three seasons. The digestibilities of dry matter was significantly (p<0.05) lower, whereas that of crude fiber, acid detergent fibre and cellulose were negative during winter. Interestingly, the feed:gain was exceedingly well during winter than in other seasons and it is concluded that it was the best season for production of rabbits under sub-temperate Himalayan conditions.

Peeling Damage of Sapling caused by the Developing Process of Roe Deer Antlers in Warm-temperate Forests of Jeju Island (제주도 난대림에서 노루 뿔의 성장과정에 의한 어린나무 박피에 관한 연구)

  • Kim, Eun Mi;Park, Youngkyu;Kwon, Jino;Kim, Ji Eun;Kang, Chang Wan;Lee, Chi Bong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • Peeling damage of trees is usually caused by Cervidae such as deer, roe deer because of the lack of food in forests. However, it happens as part of the developing of antlers in Jeju Island when the roe deer try to remove the Velvet-the skin of the antlers. The research area is the Hannam experimental forest (400 m up to 500 m above sea level) of Korea Forest Research Institute in Jeju Island, and the survey was carried out along the 6 km long of forest road with 5 m width on both sides. Twenty five tree species (total 267 stands) are damaged by peeling; 18 (134 stands) deciduous broad-leaved species, 5 (71 stands) in evergreen broad-leaved species, 2 (62 stands) coniferous species. The most common damaged species are in order of Daphniphyllum macropodum, Cryptomeria japonica, Lindera erythrocarpa, Clerodendrum trichotomum, Zanthoxylum schinifolium. Mainly damaged trees are approximately 3~4 years old saplings, and they show the mean height $120.7{\pm}42.4cm$, diameter measured at 5 cm height $1.5{\pm}0.5cm$. The Lowest peeling beginning height is $22.1{\pm}10.1cm$, and the mean length of peeling is $27.5{\pm}10.6cm$. Once the peeling damage happens, the saplings are infected by fungi secondly, and are distorted or dead, therefore the future structure of warm-temperate forests could be in influenced in species. Warm-temperate forest landscape and species change related to the climate change is a rising issue in Jeju Island. However the changes caused by peeling damage also could be an important issue in the natural process of forest environment, afforestation, local nursery and sustainable forest management of Jeju Island.

Distribution Characteristics of Woody Plants Resources in Jeiu, Korea (제주도 목본식물자원의 분포특성)

  • Kim, Chan-Soo;Son, Seok-Gu;Tho, Jae-Hwa;Kim, Ji-Eun;Hwang, Seok-In;Cheong, Jin-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.424-436
    • /
    • 2007
  • In this paper, it was discussed situations and necessities of conservation management strategy for the woody plants resources in Jeju Island. Out of 320 taxa of the woody plants distributed in Jeju, there were 62 families, 136 genus, 279 species, 28 varieties and 13 forma. Conifers, gymnosperms, were 3 families, 5 genus and 7 species as holding 2.2% of total woody plants. Broad leaves, angiosperms, were 59 families, 131 genus, 272 species, 28 varieties and 13 forma that were 313 taxa. Evergreens were 84 taxa consisting of 31 families, 45 genus, 72 species, 7 varieties and 5 forma that make up 26.8% out of total angiosperms. Deciduous were 229 taxa(73.2%) consisting of 42 families, 93 genus, 200 species, 21 varieties and 8 forma that were 122 trees(38.1%), 177 shrubs(55.1%) and 21 vine plants(6.8%). Life form spectra by dormancy, disseminule, radicoid and growth form were analysed. Thirty eight taxa including 17 families, 21 genus, 14 species and 16 varieties out of 320 taxa growing Jeju were endemic to Korea and 22 taxa of them were endemic to Jeju. The specific plant species among the woody plants in Jeju were 10 taxa in V grade, 24 taxa in IV grade and 53 taxa in III grade. These are correspondence to those of nations as 12% of V grade, 7.6% of IV grade and 17.2% of III grade.

Effects of Artificial Shading on Flowering and Growth of Maesa japonica Seedlings (차광 처리가 빌레나무(Maesa japonica)의 개화 및 생장에 미치는 영향)

  • Park, Min Ji;Seo, Yeon Ok;Choi, Hyung Soon;Choi, Byoung Ki;Im, Eun Young;Yang, Ju Eun;Lee, Chae bin
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.462-469
    • /
    • 2021
  • Maesa japonica (Thunb.) Moritzi & Zoll. is a rare evergreen shrub that occurs in west Gotjawal, Jeju island, Korea. This study was conducted to investigate effects of an artificial shading on flowering and growth characteristics of M. japonica seedlings. The level of shading had been set to be 35%, 55% and 75% using shading net. The stage of flowering and flowering ratio, seedling height, the number of leaves and stems, leaf area were measured. Flowering timings were delayed by shading. The number of flowering seedlings per plot and inflorescences per seedling were the most in 55% shading level. Tendency of decreased seedling height with increased shading level was shown. The number of leaves and stems were the fewest values in 75% shading level. The increased biomass with decreased shading level was statistically significant. Aboveground and underground biomass were 2.1 and 1.7 times higher in shading 35% than in shading 75%, respectively. Meanwhile, all seedlings in non-shading plots were dead in winter. Such might be speculated as results of the light stress. As a result, we conclude that M. japonica vitally demands the shading for growth and the optimal shading levels for growth and flowering are 35% and 55%, respectively.

Characteristics and Restoration Strategies of Warm-Temperate Forests Vegetation Types in Island Area on the Korean Peninsula (한반도 도서지역의 난온대림 식생유형 특징 및 복원전략)

  • Kang, Hyun-Mi;Kang, Ji-Woo;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.507-524
    • /
    • 2022
  • In this study, we revealed the location environment and community structural characteristics after extensively investigating Korea's warm-temperate island areas and categorizing vegetation through TWINSPAN analysis. Based on it, this study aims to suggest the direction of the vegetation restoration plan for warm-temperate forests by deriving a restoration strategy for each vegetation type. The vegetation types were clearly divided into eight types, and communities I through IV were good evergreen broad-leaved forests dominated by Machilus thunbergii and Castanopsis sieboldii. On the other hand, communities V through VIII were Pinus thunbergii forest, deciduous broad-leaved forest, and artificial forest, and retrogressive succession vegetation in the warm-temperate areas. The environmental factors derived from the DCA analysis were altitude (average temperature of the coldest month) and distance from the coastline (salt tolerance). The distribution pattern of warm-temperate forests has been categorized into M. thunbergii, C. sieboldii and Cyclobalanopsis spp. forest types according to the two environmental factors. It is reasonable to apply the three vegetation types as restoration target vegetation considering the location environment of the restoration target site. In communities V through VIII, P. thunbergiiand deciduous broad-leaved formed a canopy layer, and evergreen broad-leaved species with strong seed expansion frequently appeared in the ground layer, raising the possibility of vegetation succession as evergreen broad-leaved forests. The devastated land where forests have disappeared in the island areas is narrow, but vegetation such as P. thunbergii and deciduous broad-leaved forests, which have become a retrogressive succession, forms a large area. The restoration strategy of renewing this area into evergreen, broad-leaved forests should be more effective in realizing carbon neutrality and promoting biodiversity.

Stand Characteristics and NVOCs Emission Characteristics in Warm Temperate Evergreen Broadleaf Forests and Pinus thunbergii Forest (난대 상록활엽수림과 곰솔림 임분 특성 및 NVOCs 발산 특성)

  • Kim, Gwang-Il;Kim, Sang-Mi;Park, In-Teak;Lee, Kye-Han;Oh, Deuk-Sil
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • This study investigated each forest's stand characteristics and the NVOCs emission characteristics for Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus, Camellia Japonica which are major warm temperate evergreen broad-leaved species, and Pinus thunbergii. Data were collected from May 2019 to January 2020. The seasonal temperature and humidity of each research site indicated the typical climatic characteristics of Korea, which are hot and humid in summer and cold and dry in winter. Also, the atmospheric pressure was generally high in winter and higher in autumn and winter than in spring and summer. Overall, the total volume of NVOCs (Natural Volatile Organic Compounds) from the five research sites was the highest in the summer. The concentration of TNVOCs was relatively high in the Dendropanax trifidus forest in spring and winter, the Castanopsis sieboldii forest in the autumn, and the Quercus acuta forest in the summer. According to the results of this study, it was confirmed that the concentrations of NVOCs emission of warm temperate evergreen broad-leaved species such as Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus and Camellia Japonica were not lower but rather higher than Pinus thunbergii. The correlation was positive (+) between NVOCs emission and temperature (r=0.590, P=0.000) or humidity (r=0.655, P=0.000), whereas it was negative (-) between NVOCs emission and atmospheric pressure (r=-0.384, P=0.000) or wind speed (r=-0.263, P=0.018). Among the micrometeological factors, humidity (β=0.507, P=0.000) was found to have the greatest effect on NVOC emission, followed by temperature, atmospheric pressure, and wind speed.

Allometric equations, stem density and biomass expansion factors for Cryptomeria japonica in Mount Halla, Jeju Island, Korea

  • Jung, Sung Cheol;Lumbres, Roscinto Ian C.;Won, Hyun Kyu;Seo, Yeon Ok
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.177-184
    • /
    • 2014
  • This study was conducted to develop allometric equations and to determine the stem density and biomass expansion factor (BEF) for the estimation of the aboveground and belowground biomass of Cryptomeria japonica in Jeju Island, Korea. A total of 18 trees were harvested from the 40-year-old C. japonica stands in Hannam experimental forest, Jeju Island. The mean biomass of the C. japonica was $50.4Mg\;ha^{-1}$ in stem wood, $23.1Mg\;ha^{-1}$ in root, $9.6Mg\;ha^{-1}$ in branch, $4.6Mg\;ha^{-1}$ in needle and $4.3Mg\;ha^{-1}$ in stem bark. The diameter at breast height (DBH) was selected as independent variable for the development of allometric equations. To evaluate the performance of these equations, coefficient of determination ($R^2$) and root mean square error (RMSE) were used and results of the evaluation showed that $R^2$ ranged from 71% (root biomass equation) to 96% (aboveground biomass equation) and the RMSE ranged from 0.10 (aboveground biomass equation) to 0.33 (root biomass equation). The mean stem density of C. japonica was $0.37g\;cm^{-3}$ and the mean aboveground BEF was $1.28g\;g^{-1}$. Furthermore, the ratio of the root biomass to aboveground biomass was 0.32.

The Natural Environment during the Last Glacial Maximum Age around Korea and Adjacent Area

  • Yoon, Soon-Ock;Hwang, Sang-Ill
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • This study is conducted to examine the data of climate or environmental change in the northeastern Asia during the last glacial maximum. A remarkable feature of the 18,000 BP biome reconstructions for China is the mid-latitude extention of steppe and desert biomes to the modem eastern coast. Terrestrial deposits of glacial maximum age from the northern part of Yellow Sea suggest that this region of the continental shelf was occupied by desert and steppe vegetation. And the shift from temperate forest to steppe and desert implies conditions very much drier than present in eastern Asia. Dry conditions might be explained by a strong winter monsoon and/or a weak summer monsoon. A very strong depression of winter temperatures at LGM. has in the center of continent has influenced in northeast Asia similarly. The vegetation of Hokkaido at LGM was subarctic thin forest distributed on the northern area of middle Honshu and cool and temperate mixed forest at southern area of middle Honshu in Japan. The vegetation landscape of mountain- and East coast region of Korea was composed of herbaceous plants with sparse arctic or subarctic trees. The climate of yellow sea surface and west region of Korea was much drier and temperate steppe landscape was extended broadly. It is supposed that a temperate desert appeared on the west coast area of Pyeongan-Do and Cheolla-Do of Korea. The reconstruction of year-round conditions much colder than today right across China, Korea and Japan is consistent with biome reconstruction at the LGM.

  • PDF

RNA-seq profiling of skin in temperate and tropical cattle

  • Morenikeji, Olanrewaju B.;Ajayi, Oyeyemi O.;Peters, Sunday O.;Mujibi, Fidalis D.;De Donato, Marcos;Thomas, Bolaji N.;Imumorin, Ikhide G.
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.141-158
    • /
    • 2020
  • Skin is a major thermoregulatory organ in the body controlling homeothermy, a critical function for climate adaptation. We compared genes expressed between tropical- and temperate-adapted cattle to better understand genes involved in climate adaptation and hence thermoregulation. We profiled the skin of representative tropical and temperate cattle using RNA-seq. A total of 214,754,759 reads were generated and assembled into 72,993,478 reads and were mapped to unique regions in the bovine genome. Gene coverage of unique regions of the reference genome showed that of 24,616 genes, only 13,130 genes (53.34%) displayed more than one count per million reads for at least two libraries and were considered suitable for downstream analyses. Our results revealed that of 255 genes expressed differentially, 98 genes were upregulated in tropically-adapted White Fulani (WF; Bos indicus) and 157 genes were down regulated in WF compared to Angus, AG (Bos taurus). Fifteen pathways were identified from the differential gene sets through gene ontology and pathway analyses. These include the significantly enriched melanin metabolic process, proteinaceous extracellular matrix, inflammatory response, defense response, calcium ion binding and response to wounding. Quantitative PCR was used to validate six representative genes which are associated with skin thermoregulation and epithelia dysfunction (mean correlation 0.92; p < 0.001). Our results contribute to identifying genes and understanding molecular mechanisms of skin thermoregulation that may influence strategic genomic selection in cattle to withstand climate adaptation, microbial invasion and mechanical damage.