• Title/Summary/Keyword: telluride

Search Result 126, Processing Time 0.018 seconds

Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions ($ZrO_2$를 나노개재물로 첨가한 p형 $(Bi,Sb)_2Te_3$ 나노벌크 가압소결체의 열전특성)

  • Yeo, Y.H.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.

Studies on Fluid Inclusion and Pyrite Geochemistry in the Moisan Au-Ag Deposit, Haenam District, Korea (해남 모이산 금-은 광상의 유체포유물 및 황화물 지구화학 연구)

  • Park, Sol;Seo, Jung Hun;Kim, Chang Seong;Yang, Yoon-Seok;Oh, Jihye;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.221-234
    • /
    • 2020
  • We occur together with telluride minerals. Fluid inclusions in the euhedral quartz crystals are mainly aqueous liquid-rich inclusions, which have salinities about 0.18-2.24 wt% NaCl equivalent. Some quartz vein contains aqueous vapor-rich inclusions as well. Homogenization temperatures of the assemblages of the liquid-rich inclusions are about 141-384 ℃, and the temperatures are lower at the shallower vein samples. In the high Au-Ag grade depth intervals, relatively deeper fluids have relatively higher salinities and homogenization temperatures, while shallower fluids show somewhat wider ranges. These might indicate that the deep Au-Ag bearing hydrothermal fluids at the Moisan area experienced phase separation as well as mixing with meteoric water by decreasing pressure. Au-Ag precipitation in the Moisan deposit is not associated with pyrite, but pyrite include Au-Ag bearing phase as an inclusion, which might possibly be tellurides or electrum. Au/Ag ratios in the Au-Ag bearing phase do not change with different depth.

Thermoelectric Properties of the n-type Bi2(Te0.9Se0.1)3 Processed by Hot Pressing with Dispersion of 0.5 vol% TiO2 Nanopowders (0.5 vol% TiO2 나노분말을 분산시킨 n형 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성)

  • Park, D.H.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powders, which were fabricated by melting/grinding method and dispersed with 0.5 vol% $TiO_2$ nanopowders, were hot-pressed in order to investigate the effects of $TiO_2$ dispersion on the thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. Excellent thermoelectric properties such as a maximum figure-of-merit of $2.93{\times}10^{-3}/K$ and a maximum dimensionless figure-of-merit of 1.02 were obtained for the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. With dispersion of 0.5 vol% $TiO_2$ nanopowders, the maximum figure-of-merit and the maximum dimensionless figure-of-merit decreased to $2.09{\times}10^{-3}/K$ and 0.68, respectively.

Spin-orbit Coupling Effect on the Structural Optimization: Bismuth Telluride in First-principles (스핀-궤도 각운동량 상호작용의 구조 최적화에 대한 효과: 비스무스 텔루라이드의 제일원리 계산의 경우)

  • Tran, Van Quang;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Spin-orbit coupling (SOC) effect is known to be the physical origin for various exotic magnetic phenomena in the low-dimensional systems. Recently, SOC also draws lots of attention in the study on magnetically doped thermoelectric alloys to determine their properties as the thermoelectric application as well as the topological insulator via the exact electronic structures determination near the Fermi level. In this research, aiming to investigate the spin-orbit coupling effect on the structural properties such as the lattice constants and the bulk modulus of the most widely investigated thermoelectric host material, $Bi_2Te_3$, we carried out the first-principles electronic structure calculation using the all-electron FLAPW (full-potential linearized augmented plane-wave) method. Employing both the local density approximation (LDA) and the generalized gradient approximation (GGA), the structural optimization is achieved by varying the in-plane lattice constant fixing the perpendicular lattice constant and vice versa, to find that the SOC effect increases the equilibrium lattices slightly in both directions while it markedly reduces the bulk modulus value implying the strong orientational dependence, which are attributed to the material's intrinsic structural anisotropy.

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Fitriani, Fitriani;Said, Suhana Mohd;Rozali, Shaifulazuar;Salleh, Mohd Faiz Mohd;Sabri, Mohd Faizul Mohd;Bui, Duc Long;Nakayama, Tadachika;Raihan, Ovik;Hasnan, Megat Muhammad Ikhsan Megat;Bashir, Mohamed Bashir Ali;Kamal, Farhan
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

An Optimization Method of Measuring Heart Position in Dynamic Myocardial Perfusion SPECT with a CZT-based camera (동적 심근관류 SPECT에서 심장의 위치 측정방법에 대한 고찰)

  • Seong, Ji Hye;Lee, Dong Hun;Kim, Eun Hye;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.75-79
    • /
    • 2019
  • Purpose Cadmium-zinc-telluride (CZT) camera with semiconductor detector is capable of dynamic myocardial perfusion SPECT for coronary flow reserve (CFR). Image acquisition with the heart positioned within 2 cm in the center of the quality field of view (QFOV) is recommended because the CZT detector based on focused multi-pinhole collimators and is stationary gantry without rotation. The aim of this study was to investigate the optimal method for measuring position of the heart within the center of the QFOV when performing dynamic myocardial perfusion SPECT with the Discovery NM 530c camera. Materials and Methods From June to September 2018, 45 patients were subject to dynamic myocardial perfusion SPECT with D530c. For accurate heart positioning, the patient's heart was scanned with a mobile ultrasound and marked at the top of the probe where the mitral valve (MV) was visible in the parasternal long-axis view (PLAX). And, the marked point on the patient's body matched with the reference point indicated CZT detector in dynamic stress. The heart was positioned to be in the center of the QFOV in rest. The coordinates of dynamic stress and rest were compared statistically. Results The coordinates of the dynamic stress using mobile ultrasound and those taken of the rest were recorded for comparative analysis with regard to the position of the couch and analyzed. There were no statistically significant differences in the coordinates of Table in & out, Table up & down, and Detector in & out (P > 0.05). The difference in distance between the 2 groups was measured at $0.25{\pm}1.00$, $0.24{\pm}0.96$ and $0.25{\pm}0.82cm$ respectively, with no difference greater than 2 cm in all categories. Conclusion The position of the heart taken using mobile ultrasound did not differ significantly from that of the center of the QFOV. Therefore, The use of mobile ultrasound in dynamic stress will help to select the correct position of the heart, which will be effective in clinical diagnosis by minimizing the image quality improvement and the patient's exposure to radiation.