Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions

$ZrO_2$를 나노개재물로 첨가한 p형 $(Bi,Sb)_2Te_3$ 나노벌크 가압소결체의 열전특성

  • Yeo, Y.H. (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, M.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 여용희 (홍익대학교 신소재공학과) ;
  • 김민영 (홍익대학교 신소재공학과) ;
  • 오태성 (홍익대학교 신소재공학과)
  • Received : 2010.09.07
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.

p형 $(Bi,Sb)_2Te_3$ 분말을 용해/분쇄법으로 제조하여 가압소결 후 가압소결조건에 따른 열전특성을 분석하였으며, 나노개재물로서 $ZrO_2$의 첨가에 따른 열전특성의 변화거동을 분석하였다. 가압소결온도를 $350^{\circ}C$에서 $550^{\circ}C$로 증가시킴에 따라 가압소결체의 Seebeck 계수가 275 ${\mu}V$/K에서 230 ${\mu}V$/K로 감소하였으며, 전기비저항이 6.68 $m{\Omega}m$-cm에서 1.86 $m{\Omega}$-cm로 감소하였다. 1 vol% 이상의 $ZrO_2$ 함량 증가에 따라 power factor가 계속 감소하는 거동으로부터 $(Bi,Sb)_2Te_3$ 가압소결체의 최대 power factor를 얻을 수 있는 $ZrO_2$ 나노개재물의 최적 함량은 1 vol% 미만으로 판단되었다.

Keywords

References

  1. M. A. Ryan and J-P. Fleurial, "Where there is heat, there is a way: thermal to electric power conversion using thermoelectric micro converters", Electochem. Soc. Interface, 11, 30 (2002).
  2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  3. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouki and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedded Nanoparticles in Crystalline Semiconductors", Phys. Review Lett., 96, 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  4. M. Y. Kim and T. S. Oh, "Effects of Annealing in Reduction Ambient on Thermoelectric Properties of the (Bi,Sb)2Te3 Thin Films Processed by Vacuum Evaporation", J. Microelectron. Packag. Soc., 15(3), 1 (2008).
  5. K. Y. Lee and T. S. Oh, "Thermoelectric Characteristics of the Electroplated Bi-Te Films and Photoresist Process for Fabrication of Micro Thermoelectric Devices", J. Microelectron. Packag. Soc., 14(2), 9 (2007).
  6. D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_{2}(Te,Se)_{3}$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2007).
  7. D. R. Rowe, "CRC handbook of Thermoelectrics", CRC Press, Boca Raton, pp.441-458 (1995).
  8. R. Venkatasubramanian, "Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures", Phys. Rev. B, 61, 3091 (2000). https://doi.org/10.1103/PhysRevB.61.3091
  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit", Nature, 413, 597 (2001). https://doi.org/10.1038/35098012
  10. T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. Laforge, "Quantum Dot Superlattice Thermoelectric Materials and Devices", Science, 297, 2229 (2002). https://doi.org/10.1126/science.1072886
  11. T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, "Experimental Proof-of-principle Investigation of Enhanced Z3DT in (001) Oriented Si/Ge Superlattices", Appl. Phys. Lett. 77, 1490 (2000). https://doi.org/10.1063/1.1308271
  12. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J-P. Fleurial and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
  13. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites", Appl. Phys. Lett., 86, 062111 (2005). https://doi.org/10.1063/1.1863440
  14. X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang and T. J. Zhu, "Synthesis of Nanocomposites with Improved Thermoelectric Properties", J. Electron. Mater., 38, 1017 (2009). https://doi.org/10.1007/s11664-009-0698-2
  15. J-F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of Bi2Te3 Polycrystals", Phys. Stat. Sol., 203, 3768 (2006). https://doi.org/10.1002/pssa.200622011
  16. H. L. Ni, X. B. Zhao, T. J. Zhu, X. H. Ji and J. P. Tu, "Synthesis and Thermoelectric Properties of Bi2Te3 Based Nanocomposites", J. Alloys & Compounds, 397, 317 (2005). https://doi.org/10.1016/j.jallcom.2005.01.046
  17. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophysical Engineering, 3, 89 (1999). https://doi.org/10.1080/108939599199774
  18. H. J. Kim, B. Y. Jung, D. B. Hyun and T. S. Oh, "Mechanical Alloying Process and Thermoelectric Properties of p-type $(Bi_{1-x}Sb_{x})_{2}Te_{3}$", J. Korean Inst. Met. Mater., 36(3), 416 (1998).
  19. M. J. Smith and R. J. Knight, "Properties of $Bi_{2}Te_{3}-Sb_{2}Te3$", J. Appl. Phys., 33(7), 2186 (1962). https://doi.org/10.1063/1.1728925
  20. G. R. Miller and C.-Y. Li, "Evidence for the Existence of Antistructure Defects in Bismuth Telluride by Density Measurements", J. Phys. Chem. Solids, 26, 173 (1965). https://doi.org/10.1016/0022-3697(65)90084-3
  21. J. Horak, K. Cermak and L. Koudelka, "Energy Formation of Antisite Defects in Doped $Sb_{2}Te_{3}$ and $Bi_{2}Te_{3}$ Crystals", J. Phys. Chem. Solids, 47, 805 (1986). https://doi.org/10.1016/0022-3697(86)90010-7
  22. D. M. Gel'fgat and Z. M. Dashevskii, "Influence of Annealing in Air on the Electrophysical Properties of n-Type Solid Solutions in the $Bi_{2}Te_{3}-Sb_{2}Te_{3}$ System", Inorg. Mat., 19, 1172 (1984).
  23. S. J. Thiagarajan, W. W. R. Yang, "Nanocomposites as High Efficiency Thermoelectric Materials", Annual Review of Nano Research, Vol. 3, edited by G. Cao, Q. Zhang, C. J. Brinker, World Scientific Publishing Co., pp.441-486 (2009).