Browse > Article

Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions  

Yeo, Y.H. (Department of Materials Science and Engineering, Hongik University)
Kim, M.Y. (Department of Materials Science and Engineering, Hongik University)
Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.17, no.3, 2010 , pp. 51-57 More about this Journal
Abstract
Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.
Keywords
Thermoelectric properties; nano bulk; hot pressing; bismuth telluride; power factor; nano inclusion; $ZrO_2$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. R. Rowe, "CRC handbook of Thermoelectrics", CRC Press, Boca Raton, pp.441-458 (1995).
2 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008).   DOI   ScienceOn
3 X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites", Appl. Phys. Lett., 86, 062111 (2005).   DOI   ScienceOn
4 M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophysical Engineering, 3, 89 (1999).   DOI   ScienceOn
5 G. R. Miller and C.-Y. Li, "Evidence for the Existence of Antistructure Defects in Bismuth Telluride by Density Measurements", J. Phys. Chem. Solids, 26, 173 (1965).   DOI   ScienceOn
6 M. J. Smith and R. J. Knight, "Properties of $Bi_{2}Te_{3}-Sb_{2}Te3$", J. Appl. Phys., 33(7), 2186 (1962).   DOI
7 D. M. Gel'fgat and Z. M. Dashevskii, "Influence of Annealing in Air on the Electrophysical Properties of n-Type Solid Solutions in the $Bi_{2}Te_{3}-Sb_{2}Te_{3}$ System", Inorg. Mat., 19, 1172 (1984).
8 S. J. Thiagarajan, W. W. R. Yang, "Nanocomposites as High Efficiency Thermoelectric Materials", Annual Review of Nano Research, Vol. 3, edited by G. Cao, Q. Zhang, C. J. Brinker, World Scientific Publishing Co., pp.441-486 (2009).
9 J. Horak, K. Cermak and L. Koudelka, "Energy Formation of Antisite Defects in Doped $Sb_{2}Te_{3}$ and $Bi_{2}Te_{3}$ Crystals", J. Phys. Chem. Solids, 47, 805 (1986).   DOI   ScienceOn
10 H. J. Kim, B. Y. Jung, D. B. Hyun and T. S. Oh, "Mechanical Alloying Process and Thermoelectric Properties of p-type $(Bi_{1-x}Sb_{x})_{2}Te_{3}$", J. Korean Inst. Met. Mater., 36(3), 416 (1998).
11 X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang and T. J. Zhu, "Synthesis of Nanocomposites with Improved Thermoelectric Properties", J. Electron. Mater., 38, 1017 (2009).   DOI   ScienceOn
12 J-F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of Bi2Te3 Polycrystals", Phys. Stat. Sol., 203, 3768 (2006).   DOI   ScienceOn
13 R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit", Nature, 413, 597 (2001).   DOI   ScienceOn
14 H. L. Ni, X. B. Zhao, T. J. Zhu, X. H. Ji and J. P. Tu, "Synthesis and Thermoelectric Properties of Bi2Te3 Based Nanocomposites", J. Alloys & Compounds, 397, 317 (2005).   DOI   ScienceOn
15 T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. Laforge, "Quantum Dot Superlattice Thermoelectric Materials and Devices", Science, 297, 2229 (2002).   DOI
16 T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, "Experimental Proof-of-principle Investigation of Enhanced Z3DT in (001) Oriented Si/Ge Superlattices", Appl. Phys. Lett. 77, 1490 (2000).   DOI   ScienceOn
17 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J-P. Fleurial and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
18 K. Y. Lee and T. S. Oh, "Thermoelectric Characteristics of the Electroplated Bi-Te Films and Photoresist Process for Fabrication of Micro Thermoelectric Devices", J. Microelectron. Packag. Soc., 14(2), 9 (2007).   과학기술학회마을
19 D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_{2}(Te,Se)_{3}$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2007).   과학기술학회마을
20 R. Venkatasubramanian, "Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures", Phys. Rev. B, 61, 3091 (2000).   DOI
21 M. A. Ryan and J-P. Fleurial, "Where there is heat, there is a way: thermal to electric power conversion using thermoelectric micro converters", Electochem. Soc. Interface, 11, 30 (2002).
22 M. Y. Kim and T. S. Oh, "Effects of Annealing in Reduction Ambient on Thermoelectric Properties of the (Bi,Sb)2Te3 Thin Films Processed by Vacuum Evaporation", J. Microelectron. Packag. Soc., 15(3), 1 (2008).   과학기술학회마을
23 W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouki and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedded Nanoparticles in Crystalline Semiconductors", Phys. Review Lett., 96, 045901 (2006).   DOI   ScienceOn