Browse > Article
http://dx.doi.org/10.1007/s13391-018-0072-8

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds  

Fitriani, Fitriani (Department of Mechanical Engineering, University of Malaya)
Said, Suhana Mohd (Department of Electrical Engineering, University of Malaya)
Rozali, Shaifulazuar (Department of Mechanical Engineering, University of Malaya)
Salleh, Mohd Faiz Mohd (Department of Electrical Engineering, University of Malaya)
Sabri, Mohd Faizul Mohd (Department of Mechanical Engineering, University of Malaya)
Bui, Duc Long (Department of Non-ferrous Metals & Composites, School of Materials Science and Engineering, Hanoi University of Science and Technology)
Nakayama, Tadachika (Extreme Energy-Density Research Institute, Nagaoka University of Technology)
Raihan, Ovik (Department of Mechanical Engineering, University of Malaya)
Hasnan, Megat Muhammad Ikhsan Megat (Department of Electrical Engineering, University of Malaya)
Bashir, Mohamed Bashir Ali (Department of Mechanical Engineering, Eldaein University)
Kamal, Farhan (Department of Electrical Engineering, University of Malaya)
Publication Information
Electronic Materials Letters / v.14, no.6, 2018 , pp. 689-699 More about this Journal
Abstract
Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.
Keywords
$Bi_2S_3$; Nickel doping; Cold pressing; Porosity; Thermoelectric properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Du, Z., Zhu, T., Chen, Y., He, J., Gao, H., Jiang, G., Tritt, T.M., Zhao, X. : Roles of interstitial Mg in improving thermoelectric properties of Sb-doped $Mg_2Si_0.4}Sn_{0.6}$ solid solutions. J. Mater. Chem. 22(14), 6838-6844 (2012)   DOI
2 Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R. : Nanoscale thermal transport. J. Appl. Phys. 93(2), 793-818 (2003)   DOI
3 Goldsmid, H.J., Penn, A.W. : Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523-524 (1968)   DOI
4 Du, X., Cai, F., Wang, X. : Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 587, 6-9 (2014)   DOI
5 Ge, Z.H., Qin, P., He, D.S., Chong, X., Feng, D., Ji, Y.H., Feng, J., He, J. : Highly enhanced thermoelectric properties of $Bi/Bi_2S_3$ nanocomposites. ACS Appl. Mater. Interfaces 9(5), 4828-4834 (2017)   DOI
6 Janghorban, K., Kirkaldy, J.S., Weatherly, G.C. : The Hume-Rothery size rule and double-well microstructures in gold-nickel. J. Phys. Condens. Matter 13(38), 8661 (2001)   DOI
7 Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J. : Nanostructured thermoelectric materials: current research and future challenge. Progress Nat. Sci. Mater. Int. 22(6), 535-549 (2012)   DOI
8 Szczech, J.R., Higgins, J.M., Jin, S. : Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037-4055 (2011)   DOI
9 Jung, S.J., Kim, J.H., Kim, D.I., Kim, S.K., Park, H.H., Kim, J.S., Hyun, D.B., Baek, S.H. : Strain-assisted, low-temperature synthesis of high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 16(8), 3529-3533 (2014)   DOI
10 Zhang, Q., Zhang, Q., Chen, S., Liu, W., Lukas, K., Yan, X., Wang, H., Wang, D., Opeil, C., Chen, G., Ren, Z. : Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1(1), 183-189 (2012)   DOI
11 Petricek, V., Dusek, M., Palatinus, L. : Crystallographic computing system JANA2006: general features. Zeitschrift fur Kristallographie-Crystalline Materials 229, 345-352 (2014)
12 Vegard, L. : Die konstitution der mischkristalle und die raumfullung der atome. Zeitschrift fur Physik 5(1), 17-26 (1921)   DOI
13 Visnow, E., Heinrich, C.P., Schmitz, A., de Boor, J., Leidich, P., Klobes, B., Hermann, R.P., Muller, W.E., Tremel, W. : On the true indium content of In-filled skutterudites. Inorg. Chem. 54(16), 7818-7827 (2015)   DOI
14 Bell, L.E. : Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (5895), 1457-1461 (2008)   DOI
15 Sanz-Bobi, M.A., Palacios, R., Aguilera, A. : Potential use of small waste heat sources based on thermoelectricity: application to an overhead projector and a battery charger. In: Proceedings of 5th ETS, pp. 58-65 (1999)
16 Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A., Elsheikh, M.H. : Recent advances on $Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation. Renew. Sustain. Energy Rev. 37, 569-584 (2014)   DOI
17 Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R. : A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 64, 635-659 (2016)   DOI
18 Snyder, G.J., Toberer, E.S. : Complex thermoelectric materials. Nat. Mater. 7(2), 105-114 (2008)   DOI
19 Yang, J., Stabler, F.R. : Automotive applications of thermoelectric materials. J. Electron. Mater. 38(7), 1245-1251 (2009)   DOI
20 Rowe, D.M. : Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2005)
21 Rowe, D.M., Bhandari, C.M. : Modern Thermoelectrics. Prentice Hall, Upper Saddle River (1983)
22 Amatya, R., Ram, R.J. : Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41(6), 1011-1019 (2012)   DOI
23 Chen, K. : Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds. Queen Mary University of London, United Kingdom (2016)
24 Yu, Y.Q., Zhang, B.P., Ge, Z.H., Shang, P.P., Chen, Y.X. : Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 131(1), 216-222 (2011)   DOI
25 Mizoguchi, H., Hosono, H., Ueda, N., Kawazoe, H. : Preparation and electrical properties of $Bi_2S_3$ whiskers. J. Appl. Phys. 78(2), 1376-1378 (1995)   DOI
26 Zhao, L.D., Zhang, B.P., Liu, W.S., Zhang, H.L., Li, J.F. : Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181(12), 3278-3282 (2008)   DOI
27 Ge, Z.H., Zhang, B.P., Yu, Z.X., Li, J.F. : Effect of spark plasma sintering temperature on thermoelectric properties of $Bi_2S_3$ polycrystal. J. Mater. Res. 26(21), 2711-2718 (2011)   DOI
28 Ge, Z.H., Zhang, B.P., Liu, Y., Li, J.F. : Nanostructured $Bi_{2-x}Cu_xS_3$ bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14(13), 4475-4481 (2012)   DOI
29 Kawamoto, Y., Iwasaki, H. : Thermoelectric properties of $(Bi_{1-x}Sb_x)_2S_3$ with orthorhombics structure. J. Electron. Mater. 43(6), 1475-1479 (2014)   DOI
30 Zhang, L.J., Zhang, B.P., Ge, Z.H., Han, C.G. : Fabrication and properties of $Bi_2S_{3-x}Se_x$ thermoelectric polycrystals. Solid State Commun. 162, 48-52 (2013)   DOI
31 Sterzel, H.J. : Patent, in WO2006/089938A1 (2006)
32 Du, X., Shi, R., Ma, Y., Cai, F., Wang, X., Yuan, Z. : Enhanced thermoelectric performance of n-type $Bi_2S_3$ with added ZnO for power generation. RSC Adv. 5(39), 31004-31009 (2015)   DOI
33 Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G. : Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107(9), 094308 (2010)   DOI
34 Biswas, K., Zhao, L.D., Kanatzidis, M.G. : Tellurium-free thermoelectric: the anisotropic n-type semiconductor $Bi_2S_3$. Adv. Energy Mater. 2(6), 634-638 (2012)   DOI
35 Pearson, G.L., Bardeen, J. : Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75(5), 865 (1949)   DOI
36 Ge, Z.H., Zhang, B.P., Yu, Y.Q., Shang, P.P. : Fabrication and properties of $Bi_{2-x}Ag_{3x}S_3$ thermoelectric polycrystals. J. Alloy. Compd. 514, 205-209 (2012)   DOI