• 제목/요약/키워드: technical solution

Search Result 1,071, Processing Time 0.021 seconds

Technical Problems and solution based on Connection of Ullung Wind Power Plant into Power Distribution System (울릉도 풍력발전 계통연계 문제점 및 대책)

  • Yoon, G.G.;Lee, W.S.;Kim, B.H.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.305-307
    • /
    • 2001
  • The wind power equipment of Ullung island is composed of a hybride type of wind powers and diesel generators. The wind power generation in Ullung island is, howerever, not smooth due to the small capacity and weekness of existing power systems and line. Therefore, it is the purpose of this study to describe the technical problems and its solution through the investigation of actual conditions.

  • PDF

Properties of GPAM Emulsion for a Wet Strength Agent (습윤 지력증강제로서 GPAM Emulsion의 특성)

  • Kim, Bong-Yong;Son, Dong-Jin;Kim, Hak-Sang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.36-40
    • /
    • 2007
  • It has been problematic to repulp the dry broke treated with permanent wet strength agents like PAE, UF and MF. Solution type GPAM has the benefit of easy repulping but it has problems of cocross-linking and tends to gel. Therefore, the product concentration must be lower than 10% to reduce the gel generation problem. We developed emulsion type GPAM by an inverse emulsion technology to resolve both the repulping problem with permanent wet strength agents and the stability problem of GPAM solution products.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini;O. Rahmani;H. Hayati;M. Keshtkar
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.193-210
    • /
    • 2023
  • This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Boundary discontinuous Fourier solution of thin Levy type flat and doubly curved shallow shells

  • Ahmet Sinan Oktem;Ilke Algula
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • This study presents a static analysis of thin shallow cylindrical and spherical panels, as well as plates (which are a special case of shells), under Levy-type mixed boundary conditions and various loading conditions. The study utilizes the boundary discontinuous double Fourier series method, where displacements are expressed as trigonometric functions, to analyze the system of partial differential equations. The panels are subjected to a simply supported type 3 (SS3) boundary condition on two opposite edges, while the remaining two edges are subjected to clamped type 3 (C3) boundary conditions. The study presents comprehensive tabular and graphical results that demonstrate the effects of curvature on the deflections and moments of thin shallow shells made from symmetric and antisymmetric cross-ply laminated composites, as well as isotropic steel materials. The proposed model is validated through comparison with existing literature, and the convergence characteristics are demonstrated. The changing trends of displacements and moments are explained in detail by investigating the effect of various parameters, such as stacking lamination, material types, curvature, and loading conditions.

Axisymmetric analysis of a functionally graded layer resting on elastic substrate

  • Turan, Muhittin;Adiyaman, Gokhan;Kahya, Volkan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.423-442
    • /
    • 2016
  • This study considers a functionally graded (FG) elastic layer resting on homogeneous elastic substrate under axisymmetric static loading. The shear modulus of the FG layer is assumed to vary in an exponential form through the thickness. In solution, the FG layer is approximated into a multilayered medium consisting of thin homogeneous sublayers. Stiffness matrices for a typical homogeneous isotropic elastic layer and a half-space are first obtained by solving the axisymmetric elasticity equations with the aid of Hankel's transform. Global stiffness matrix is, then, assembled by considering the continuity conditions at the interfaces. Numerical results for the displacements and the stresses are obtained and compared with those of the classical elasticity and the finite element solutions. According to the results of the study, the approach employed here is accurate and efficient for elasto-static problems of FGMs.

AN EXISTENCE OF THREE DIFFERENT NON-TRIVIAL SOLUTIONS FOR DISCRETE ANISOTROPIC EQUATIONS WITH TWO REAL PARAMETERS

  • Ahmed A.H., Alkhalidi;Haiffa Muhsan B., Alrikabi;Mujtaba Zuhair, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.855-867
    • /
    • 2022
  • This study finds three different solutions (3-Sol's) for the fourth order nonlinear discrete anisotropic equations (DAE) with real parameter. We use the variational method(VM) and 𝜙p-Laplacian operator (𝜙p-LO) to prove the main results. In the following paper, we take the parameters λ, 𝜇 such that λ > 0 and 𝜇 ≥ 0 into consideration.

Introduction of Alternative Conformity Assessment System for New Radio, Telecommunication and Broadcasting Equipment Without Technical Requirement (융합 신기술을 채택한 방송통신기기의 대안적 적합성 평가체계 연구: 기술기준 부재의 경우를 중심으로)

  • Lee, Yong-Kyu;Han, Ju-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2B
    • /
    • pp.203-211
    • /
    • 2009
  • In the area of the telecommunication industry, a few products have been developed before related technical regulation has been made. Government agency is forced to make a final decision on whether a requested product is sellable in the market only after the structure and function of requested product is tested. The introduction of a 'SDoC', and 'privatization of technical regulation' to our legal system could be a solution for minimizing the situation mentioned above. Both 'SDoC' and 'privatization of technical regulation' are systems which are capable of minimizing the appearance of products without technical regulations. Furthermore, 'Temporary approval system' would provide a government agency with administrative procedure for new product without technical regulation.