• Title/Summary/Keyword: teaching-learning mathematics

Search Result 1,323, Processing Time 0.026 seconds

Development of Elementary Teachers' Mathematical Beliefs Scale: A Validity and Reliability Study (초등학교 교사의 수학적 신념 측정도구 개발: 타당성 및 신뢰성 분석)

  • Hwang, Sunghwan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.24 no.3
    • /
    • pp.259-277
    • /
    • 2020
  • The purpose of this study was to develop and validate a scale of Korean elementary teachers' mathematics beliefs. We examined 299 elementary teachers' mathematical beliefs using 30 items, out of which 12 items covered beliefs about the nature of mathematics and 18 items covered beliefs about mathematics teaching and learning. In the first stage, we performed exploratory factor analysis using 149 survey data to examine the factor structure. In the second stage, we performed confirmatory factor analysis using 150 survey data. Building upon previous studies, we examined the construct validity of three different models to find the best factor structure. The study results indicate that the four-factor model with 14 items provides the best fit for the data: transmissive view of mathematics, constructivist view of mathematics, transmissive view of teaching and learning, and constructivist view of teaching and learning. The findings of the study reveal that each factor has adequate internal consistency and reliability. These results confirm that the beliefs scale is a reliable and valid measurement tool to measure Korean elementary teachers' mathematical beliefs. The implications of the study are discussed.

Consideration of Mathematical Modeling as a Problem-based Learning Method (문제 중심 학습의 방법으로서 수학적 모델링에 대한 고찰)

  • Kim, Sun-Hee
    • School Mathematics
    • /
    • v.7 no.3
    • /
    • pp.303-318
    • /
    • 2005
  • If students can use mathematics to solve their problems and learn the mathematical knowledge through it, they may think mathematics useful and valuable. This study is for the teaching through problem solving in mathematics education, which I consider in terms of the problem-based learning and mathematical modeling. 1 think mathematical modeling is applied to teaching mathematics as a problem-based learning. So I developed the teaching model, and showed the example that students learn the formal and hierarchic mathematics through mathematical modeling.

  • PDF

On Developments of Teaching-Learning Contents and Constructivist Teaching Methods Using Mobile Applications Based on Augmented Reality in Mathematics Education (증강현실 기반 모바일 앱을 활용한 수학 교수·학습 콘텐츠 개발과 구성주의적 수업방안)

  • Kim, Byung Hak;Song, Jinsu;Park, Ye Eun;Jang, Yo Han;Jeong, Young Hun;Ahn, Jin Hee;Kim, Jun Hyuk;Go, Eunryeong;Jang, In Kyung
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.207-229
    • /
    • 2019
  • In the era of the Fourth Industrial Revolution, various attempts have been made to incorporate ICT technology into mathematics teaching and learning, and the necessity and efficiency of classroom instruction using flipped learning, virtual reality and augmented reality have attracted attention. This leads to an increase in demand for instructional contents and their use in education. Therefore, there is a growing need for the development of instructional contents that can be applied in the field and the study of teaching methods. In this point of view, this research classifies the types of teaching-learning, presents the flipped learning instruction and mathematics contents by teaching-learning types using constructivist mathematics education principles and augmented reality-based mobile applications. These methods and lesson plans can provide a useful framework for teaching-learning in mathematics education.

인지발달에 근거를 둔 수학학습 유형 탐색

  • 박성태
    • The Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.17-63
    • /
    • 1995
  • The exploration of Mathematics-learningmodel on the basis of Cognitive development The purpose of this paper is to sequenctialize Mathematics-learning contents, and to explore teaching-learning model for mathematics, with on the basis of the theory of cognitive development and the period of condservation formation for children. The Specific topics are as follows: (1) Systemizing those theories of cognitive development which are related to Mathematics - learning for children. (2) Organizing a sequence of Mathematics - learning, on the basis of experimental research for the period of conservation formation for children. (3) Comparing the effects of 4 types of teaching - learning model, on the basis of inference activity and operational learning principle. $\circled1$ Induction-operation(IO) $\circled2$ Induction-explanation(IE) $\circled3$ Deduction-operation(DO) $\circled4$ Deduction-explanation(DE) The results of the subjects are as follows: (1) Cognitive development theory and Mathe-matics education. $\circled1$ Congnitive development can be achieved by constant space and Mathematics know-ledge is obtained by the interaction of experience and reason. $\circled2$ The stages of congnitive development for children form a hierarchical system, its function has a continuity and acts orderly. Therefore we need to apply cognitive development for children to teach mathematics systematically and orderly. (2) Sequence of mathematical concepts. $\circled1$ The learning effect of mathematical concepts occurs when this coincides with the period of conservation formation for children. $\circled2$ Mathematics Curriculum of Elementary Schools in Korea matches with the experimental research about the period of Piaget's conservation formation. (3) Exploration of a teaching-learning model for mathematics. $\circled1$ Mathematics learning is to be centered on learning by experience such as observation, operation, experiment and actual measurement. $\circled2$ Mathematical learning has better results in from inductional inference rather than deductional inference, and from operational inference rather than explanatory inference.

  • PDF

Conceptions in Teaching and Learning of Secondary Pre-service Teachers (중등 수학 예비교사의 교수-학습 개념 연구)

  • Kwon, Na Young
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.3
    • /
    • pp.321-335
    • /
    • 2014
  • This study aimed to investigate beliefs of secondary pre-service teachers in mathematics. In particular, conceptions of teaching and learning were examined, For the purpose of this study, using an instrument, Teaching and Learning Conceptions Questionnaire, developed by Chan & Elliot(2004), a survey was conducted for 86 secondary mathematics pre-service teachers in Incheon area. The results showed that the mathematics pre-service teachers strongly agreed with the constructivist perspectives. In addition, compared to the juniors, the seniors responded more positive in the questions relative to the traditionalist view and the male students agreed more with the traditional conceptions, as comparing to the female students in this study. This study had limitations on the extent of the research site and participant. However, it would provide foundational information about pre-service teachers for teacher educators.

  • PDF

Exploring meanings of storytelling in the context of learning and teaching mathematics (수학 교수학습에서 스토리텔링의 의미에 대한 탐색)

  • Lee, Jihyun;Lee, Gi Don
    • The Mathematical Education
    • /
    • v.52 no.2
    • /
    • pp.203-215
    • /
    • 2013
  • We explored implications of storytelling in learning and teaching mathematics and examined examples of storytelling for deep understanding of the educational meanings of storytelling and new direction of storytelling approach to mathematics teachers. Mathematics had been commonly considered as the subject irrelevant to the narrative mode of thinking and only relevant to the paradigmatic mode of thinking that has rigorous logical forms and independent from human mind. As a result, this common sense forced a transmission pedagogy of mathematics: only the teachers as owners of the objective and logical truth of mathematics could transmit mathematical truths to students. Storytelling is highlighted as an alternative to the common teaching practices of mathematics focused only on the paradigmatic mode of thinking. Although a lot of research about the educational uses of storytelling mainly focused on the development and modification of stories, we suggested that the educational interest about storytelling should move to the elements or techniques for the positive effect of storytelling.

A Study on Application of Teaching-Learning Program based on Constructivist Views for Mathematically gifted Students in Primary School (초등 영재 교육에서의 구성주의 교수.학습 모형 적용 연구 - 알고리즘 문제를 중심으로 -)

  • Choi, Keun-Bae;Kim, Hong-Seon
    • Communications of Mathematical Education
    • /
    • v.21 no.2 s.30
    • /
    • pp.153-176
    • /
    • 2007
  • The purpose of this paper is to analyze teaching-learning program which can be applied to mathematically gifted students in primary school, Our program is based on constructivist views on teaching and learning of mathematics. Mainly, we study the algorithmic thinking of mathematically gifted students in primary school in connection with the network problems; Eulerian graph problem, the minimum connector problem, and the shortest path problem, The above 3-subjects are not familiar with primary school mathematics, so that we adapt teaching-learning model based on the social constructivism. To achieve the purpose of this study, seventeen students in primary school participated in the study, and video type(observation) and student's mathematical note were used for collecting data while the students studied. The results of our study were summarized as follows: First, network problems based on teaching-learning model of constructivist views help students learn the algorithmic thinking. Second, the teaching-learning model based on constructivist views gives an opportunity of various mathematical thinking experience. Finally, the teaching-learning model based on constructivist views needs more the ability of teacher's research and the time of teaching for students than an ordinary teaching-learning model.

  • PDF

A Study on Development of Teaching and Learning Materials for 'Mathematics Project Inquiry Subject' ('수학 과제 탐구' 과목의 수업을 위한 교수·학습 자료 개발 연구)

  • Cheon, Sunbin;Lee, Jong Hak;Kim, Won Kyung
    • The Mathematical Education
    • /
    • v.56 no.3
    • /
    • pp.319-340
    • /
    • 2017
  • The purpose of this study is to develop teaching and learning materials for the mathematics project inquiry subject. Since this subject is newly opened in the 2015 revised mathematics curriculum, there are no textbooks and materials. Hence it is required to help teachers plan lessons of the mathematics project inquiry subject. For this study, developing directions and objectives are established. Ten hours of lesson plan and teaching and learning materials are also developed for the two themes of 'big data' and 'industrial mathematics'. Suitability and validity of the developed material are verified positively from a survey of 8 teachers and 2 professionals. The detailed result findings are as follows. First, teaching and learning notes are suggested for each lesson plan. They are comprised of building inquiry plan, doing inquiry, summarizing results, and presentation. Second, driving questions of each theme are developed as "What is the big data and where is it used for ?" and "How various is the use of the industrial mathematics ?" respectively. Third, poster-types of each project product are developed. Fourth, three inquiry activity sheets and examples which are theme selection, inquiry plan, and group activity are developed. Fifth, 4 assessment sheets of self, peer, group, and teacher-use are developed.

A Study of a Teaching Plan for Gifted Students in Elementary School Mathematics Classes (일반학급에서의 초등 수학 영재아 지도 방안 연구)

  • Kim, Myeong-Ja;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.163-192
    • /
    • 2009
  • Currently, our country operates gifted education only as a special curriculum, which results in many problems, e.g., there are few beneficiaries of gifted education, considerable time and effort are required to gifted students, and gifted students' educational needs are ignored during the operation of regular curriculum. In order to solve these problems, the present study formulates the following research questions, finding it advisable to conduct gifted education in elementary regular classrooms within the scope of the regular curriculum. A. To devise a teaching plan for the gifted students on mathematics in the elementary school regular classroom. B. To develop a learning program for the gifted students in the elementary school regular classroom. C. To apply an in-depth learning program to gifted students in mathematics and analyze the effectiveness of the program. In order to answer these questions, a teaching plan was provided for the gifted students in mathematics using a differentiating instruction type. This type was developed by researching literature reviews. Primarily, those on characteristics of gifted students in mathematics and teaching-learning models for gifted education. In order to instruct the gifted students on mathematics in the regular classrooms, an in-depth learning program was developed. The gifted students were selected through teachers' recommendation and an advanced placement test. Furthermore, the effectiveness of the gifted education in mathematics and the possibility of the differentiating teaching type in the regular classrooms were determined. The analysis was applied through an in-depth learning program of selected gifted students in mathematics. To this end, an in-depth learning program developed in the present study was applied to 6 gifted students in mathematics in one first grade class of D Elementary School located in Nowon-gu, Seoul through a 10-period instruction. Thereafter, learning outputs, math diaries, teacher's checklist, interviews, video tape recordings the instruction were collected and analyzed. Based on instruction research and data analysis stated above, the following results were obtained. First, it was possible to implement the gifted education in mathematics using a differentiating instruction type in the regular classrooms, without incurring any significant difficulty to the teachers, the gifted students, and the non-gifted students. Specifically, this instruction was effective for the gifted students in mathematics. Since the gifted students have self-directed learning capability, the teacher can teach lessons to the gifted students individually or in a group, while teaching lessons to the non-gifted students. The teacher can take time to check the learning state of the gifted students and advise them, while the non-gifted students are solving their problems. Second, an in-depth learning program connected with the regular curriculum, was developed for the gifted students, and greatly effective to their development of mathematical thinking skills and creativity. The in-depth learning program held the interest of the gifted students and stimulated their mathematical thinking. It led to the creative learning results, and positively changed their attitude toward mathematics. Third, the gifted students with the most favorable results who took both teacher's recommendation and advanced placement test were more self-directed capable and task committed. They also showed favorable results of the in-depth learning program. Based on the foregoing study results, the conclusions are as follows: First, gifted education using a differentiating instruction type can be conducted for gifted students on mathematics in the elementary regular classrooms. This type of instruction conforms to the characteristics of the gifted students in mathematics and is greatly effective. Since the gifted students in mathematics have self-directed learning capabilities and task-commitment, their mathematical thinking skills and creativity were enhanced during individual exploration and learning through an in-depth learning program in a differentiating instruction. Second, when a differentiating instruction type is implemented, beneficiaries of gifted education will be enhanced. Gifted students and their parents' satisfaction with what their children are learning at school will increase. Teachers will have a better understanding of gifted education. Third, an in-depth learning program for gifted students on mathematics in the regular classrooms, should conform with an instructing and learning model for gifted education. This program should include various and creative contents by deepening the regular curriculum. Fourth, if an in-depth learning program is applied to the gifted students on mathematics in the regular classrooms, it can enhance their gifted abilities, change their attitude toward mathematics positively, and increase their creativity.

  • PDF

A Study on the Process of Teaching.Learning Materials Development According to the Level in the Figurate Number Tasks for Elementary Math Gifted Students (초등 수학 영재를 위한 도형수 과제의 수준별 교수.학습 자료 개발 절차와 방법에 관한 연)

  • Kim, Yang-Gwon;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.745-768
    • /
    • 2010
  • The purpose of this study at gifted students' solving ability of the given study task by using all knowledge and tools which encompass mathematical contents and curriculums, and developing the teaching learning materials of gifted students in accordance with their level which tan enhance their mathematical thinking ability and develop creative idea. With these considerations in mind, this paper sought for the standard and procedures of teaching learning materials development according to the levels for the education of the mathematically gifted students. presented the procedure model of material development, produced teaching learning methods according to levels in the task of figurate number, and developed prototypes and examples of teaching learning materials for the mathematically gifted students. Based on the prototype of teaching learning materials for the gifted students in mathematics in accordance with their level, this research developed the materials for students and materials for teachers, and performed the modification and complement of material through the field application and verification. It confirmed various solving processes and mathematical thinking levels by analyzing the figurate number tasks. This result will contribute to solving the study task by using all knowledge and tools of mathematical contents and curriculums that encompass various mathematically gifted students, and provide the direction of the learning contents and teaching learning materials which can promote the development of mathematically gifted students.

  • PDF