• Title/Summary/Keyword: task dynamics

Search Result 156, Processing Time 0.029 seconds

A Study on Robot Hand Gripper Design and Robust Control for Assembly and Disassembly Task of Machine Parts (기계 부품의 조립분해 작업을 위한 로봇핸드 그리퍼 설계 및 견실제어에 관한 연구)

  • Jeong, Gyu-Hyun;Shin, Gi-Su;Noh, Yeon-Guk;Moon, Byeong-Gap;Yoon, Byeong-Seok;Bae, Ho-Young;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • This study proposes a new technique to design and control of robot hand gripper for assembling and disassembling of a machine parts. The motion equation describing dynamics of the manipulators and object together with geometric constraint is formulated by Lagrange-Euler's equation. And the problems of controlling both the grasping force and the rotation angle of the grasped object under the constraints are analyzed. The effect of geometric constraints and a method of computer simulation for overall system is verified. Finally, it is illustrated that even in case of there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs control of joint and this feedback connection from sensing data to control grasping of machinery parts.

Static and dynamic load superposition in spacecraft structural analysis

  • Vaquer-Araujo, Xavier;Schottle, Florian;Kommer, Andreas;Konrad, Werner
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.259-275
    • /
    • 2018
  • In mechanical analysis of spacecraft structures situations appear where static and dynamic loads must be considered simultaneously. This could be necessary either by load definition or preloaded structures. The superposition of these environments has an impact on the load and stress distribution of the analysed structures. However, this superposition cannot be done by adding both load contributions directly. As an example, to compute equivalent Von Mises stresses, the phase information must be taken into account in the stress tensor superposition. Finite Element based frequency response solvers do not allow the calculation of superposed static and dynamic responses. A manual combination of loads in a post-processing task is required. In this paper, procedures for static and harmonic loads superposition are presented and supported by analytical and finite element-based examples. The aim of the paper is to provide evidence of the risks of using different superposition techniques. Real application examples such as preloaded mechanism structures and propulsion system tubing assemblies are provided. This study has been performed by the Structural Engineering department of Airbus Defence and Space GmbH Friedrichshafen.

A Web-Based Domain Ontology Construction Modelling and Application in the Wetland Domain

  • Xing, Jun;Han, Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.754-759
    • /
    • 2007
  • Methodology of ontology building based on Web resources will not only reduce significantly the ontology construction period, but also enhance the quality of the ontology. Remarkable progress has been achieved in this regard, but they encounter similar difficulties, such as the Web data extraction and knowledge acquisition. This paper researches on the characteristics of ontology construction data, including dynamics, largeness, variation and openness and other features, and the fundamental issue of ontology construction - formalized representation method. Then, the key technologies used in and the difficulties with ontology construction are summarized. A software Model-OntoMaker (Ontology Maker) is designed. The model is innovative in two regards: (1) the improvement of generality: the meta learning machine will dynamically pick appropriate ontology learning methodologies for data of different domains, thus optimizing the results; (2) the merged processing of (semi-) structural and non-structural data. In addition, as known to all wetland researchers, information sharing is vital to wetland exploitation and protection, while wetland ontology construction is the basic task for information sharing. OntoMaker constructs the wetland ontologies, and the model in this work can also be referred to other environmental domains.

  • PDF

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Relativistic Radiation Belt Electron Responses to GEM Magnetic Storms: Comparison of CRRES Observations with 3-D VERB Simulations

  • Kim, Kyung-Chan;Shprits, Yuri;Subbotin, Dmitriy;Ni, Binbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2012
  • Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch-angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch-angle scattering by plasmaspheric hiss inside the plasmasphere. We provide a detailed description of simulations for each of the GEM storm events.

  • PDF

Development of Analysis Technique for a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 가스차단기 설계 기술 개발)

  • Lee, J.C.;Oh, I.S.;Min, K.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.523-528
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multicomponent geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. The technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increases.

  • PDF

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF