• Title/Summary/Keyword: target volume

Search Result 913, Processing Time 0.028 seconds

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

Evaluation of response to stereotactic radiosurgery in patients with radioresistant brain metastases

  • Sayan, Mutlay;Mustafayev, Teuta Zoto;Sahin, Bilgehan;Kefelioglu, Erva Seyma Sare;Wang, Shang-Jui;Kurup, Varsha;Balmuk, Aykut;Gungor, Gorkem;Ohri, Nisha;Weiner, Joseph;Ozyar, Enis;Atalar, Banu
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • Purpose: Renal cell carcinoma (RCC) and melanoma have been considered 'radioresistant' due to the fact that they do not respond to conventionally fractionated radiation therapy. Stereotactic radiosurgery (SRS) provides high-dose radiation to a defined target volume and a limited number of studies have suggested the potential effectiveness of SRS in radioresistant histologies. We sought to determine the effectiveness of SRS for the treatment of patients with radioresistant brain metastases. Materials and Methods: We performed a retrospective review of our institutional database to identify patients with RCC or melanoma brain metastases treated with SRS. Treatment response were determined in accordance with the Response Evaluation Criteria in Solid Tumors. Results: We identified 53 radioresistant brain metastases (28% RCC and 72% melanoma) treated in 18 patients. The mean target volume and coverage was 6.2 ± 9.5 mL and 95.5% ± 2.9%, respectively. The mean prescription dose was 20 ± 4.9 Gy. Forty lesions (75%) demonstrated a complete/partial response and 13 lesions (24%) with progressive/stable disease. Smaller target volume (p < 0.001), larger SRS dose (p < 0.001), and coverage (p = 0.008) were found to be positive predictors of complete response to SRS. Conclusion: SRS is an effective management option with up to 75% response rate for radioresistant brain metastases. Tumor volume and radiation dose are predictors of response and can be used to guide the decision-making for patients with radioresistant brain metastases.

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.

Evaluation of the Radiation Pneumonia Development Risk in Lung Cancer Cases

  • Yilmaz, Sercan;Adas, Yasemin Guzle;Hicsonmez, Ayse;Andrieu, Meltem Nalca;Akyurek, Serap;Gokce, Saban Cakir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7371-7375
    • /
    • 2014
  • Background: Concurrent chemo-radiotherapy is the recommended standard treatment modality for patients with locally advanced lung cancer. The purpose of three-dimensional conformal radiotherapy (3DCRT) is to minimize normal tissue damage while a high dose can be delivered to the tumor. The most common dose limiting side effect of thoracic RT is radiation pneumonia (RP). In this study we evaluated the relationship between dose-volume histogram parameters and radiation pneumonitis. This study targeted prediction of the possible development of RP and evaluation of the relationship between dose-volume histogram (DVH) parameters and RP in patients undergoing 3DCRT. Materials and Methods: DVHs of 41 lung cancer patients treated with 3DCRT were evaluated with respect to the development of grade ${\geq}2$ RP by excluding gross tumor volume (GTV) and planned target volume (PTV) from total (TL) and ipsilateral (IPSI) lung volume. Results: Were admitted statistically significant for p<0.05. Conclusions: The cut-off values for V5, V13, V20, V30, V45 and the mean dose of TL-GTV; and V13, V20,V30 and the mean dose of TL-PTV were statistically significant for the development of Grade ${\geq}2$ RP. No statistically significant results related to the development of Grade ${\geq}2$ RP were observed for the ipsilateral lung and the evaluation of PTV volume. A controlled and careful evaluation of the dose-volume histograms is important to assess Grade ${\geq}2$ RP development of the lung cancer patients treated with concurrent chemo-radiotherapy. In the light of the obtained data it can be said that RP development may be avoided by the proper analysis of the dose volume histograms and the application of optimal treatment plans.

Designing Laser Pulses for Manipulating the Interior Structure of Solids (고체 내부의 구조적 변화를 위한 Laser Pulse의 설계)

  • Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 1995
  • This paper is concerned with the design of optimal surface heating patterns that result in focusing acoustic energy inside a subsurface target volume at a specified target time. The surface of the solid is heated by an incident laser beam which gives rise to shear and compressional waves propagating into the solid. The optimal heating design process aims to achieve the desired energy focusing at the target with minimal laser power densities and minimal system disturbance away from the target. The optimality conditions are secured via the conjugated gradient method and by the finite element method along with using the half-space Green's function matrix. Good quality energy focusing is achived with the optimal designs reflecting the high directivity of the photothermally generated shear wave patterns.

  • PDF

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

Identification of target subjects and their constraints for automated MEP routing in an AEC project

  • Park, SeongHun;Shin, MinSo;Kim, Tae wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.776-783
    • /
    • 2022
  • Since Mechanical, Electrical, and Plumbing(MEP) routing is a repetitive and experience-centered process that requires considerable time and human resources, if automated, design errors can be prevented and the previously required time and human resources can be reduced. Although research on automatic routing has been conducted in many industries, the MEP routing in AEC projects has yet to be identified due to the complexity of system configuration, distributed expertise, and various constraints. Therefore, the purpose of this study is to identify the target subjects for MEP routing automation and the constraints of each subject. The MEP design checklist provided by a CM company and existing literature review were conducted, and target subjects and constraints were identified through process observation and in-depth expert interviews for five days by visiting a MEP design company. The target subjects were largely divided into six categories: air conditioning plumbing, air conditioning duct, restroom sanitary plumbing, heating plumbing, and diagram. The findings from interviews show that work reduction and error reduction has the greatest effect on air conditioning plumbing while the level of difficulty is the highest in air conditioning duct and restroom sanitary plumbing. Major constraints for each subject include preventing cold drafts on air conditioning pipes, deviation in ventilation volume in air conditioning ducts, routing order on restroom sanitary plumbing, and separation distance from the wall on heating plumbing. In this way, subjects and constraints identified in this study can be used for MEP automatic routing.

  • PDF

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

Comparative evaluation of dose according to changes in rectal gas volume during radiation therapy for cervical cancer : Phantom Study (자궁경부암 방사선치료 시 직장가스 용적 변화에 따른 선량 비교 평가 - Phantom Study)

  • Choi, So Young;Kim, Tae Won;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.89-97
    • /
    • 2021
  • Purpose: The purpose of this study is to compare and evaluate the dose change according to the gas volume variations in the rectum, which was not included in the treatment plan during radiation therapy for cervical cancer. Materials and methods: Static Intensity Modulated Radiation Therapy (S-IMRT) using a 9-field and Volumetric Modulated Arc Therapy (VMAT) using 2 full-arcs were established with treatment planning system on Computed Tomography images of a human phantom. Random gas parameters were included in the Planning Target Volume(PTV) with a maximum change of 2.0 cm in increments of 0.5 cm. Then, the Conformity Index (CI), Homogeneity Index (HI) and PTV Dmax for the target volume were calculated, and the minimum dose (Dmin), mean dose (Dmean) and Maximum Dose (Dmax) were calculated and compared for OAR(organs at risk). For statistical analysis, T-test was performed to obtain a p-value, where the significance level was set to 0.05. Result: The HI coefficients of determination(R2) of S-IMRT and VMAT were 0.9423 and 0.8223, respectively, indicating a relatively clear correlation, and PTV Dmax was found to increase up to 2.8% as the volume of a given gas parameter increased. In case of OAR evaluation, the dose in the bladder did not change with gas volume while a significant dose difference of more than Dmean 700 cGy was confirmed in rectum using both treatment plans at gas volumes of 1.0 cm or more. In all values except for Dmean of bladder, p-value was less than 0.05, confirming a statistically significant difference. Conclusion: In the case of gas generation not considered in the reference treatment plan, as the amount of gas increased, the dose difference at PTV and the dose delivered to the rectum increased. Therefore, during radiation therapy, it is necessary to make efforts to minimize the dose transmission error caused by a large amount of gas volumes in the rectum. Further studies will be necessary to evaluate dose transmission by not only varying the gas volume but also where the gas was located in the treatment field.