Comparative evaluation of dose according to changes in rectal gas volume during radiation therapy for cervical cancer : Phantom Study

자궁경부암 방사선치료 시 직장가스 용적 변화에 따른 선량 비교 평가 - Phantom Study

  • Choi, So Young (Department of Radiation Oncology, ASAN Medical Center) ;
  • Kim, Tae Won (Department of Radiation Oncology, ASAN Medical Center) ;
  • Kim, Min Su (Department of Radiation Oncology, ASAN Medical Center) ;
  • Song, Heung Kwon (Department of Radiation Oncology, ASAN Medical Center) ;
  • Yoon, In Ha (Department of Radiation Oncology, ASAN Medical Center) ;
  • Back, Geum Mun (Department of Radiation Oncology, ASAN Medical Center)
  • 최소영 (서울아산병원 방사선종양학과) ;
  • 김태원 (서울아산병원 방사선종양학과) ;
  • 김민수 (서울아산병원 방사선종양학과) ;
  • 송흥권 (서울아산병원 방사선종양학과) ;
  • 윤인하 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과)
  • Published : 2021.12.31

Abstract

Purpose: The purpose of this study is to compare and evaluate the dose change according to the gas volume variations in the rectum, which was not included in the treatment plan during radiation therapy for cervical cancer. Materials and methods: Static Intensity Modulated Radiation Therapy (S-IMRT) using a 9-field and Volumetric Modulated Arc Therapy (VMAT) using 2 full-arcs were established with treatment planning system on Computed Tomography images of a human phantom. Random gas parameters were included in the Planning Target Volume(PTV) with a maximum change of 2.0 cm in increments of 0.5 cm. Then, the Conformity Index (CI), Homogeneity Index (HI) and PTV Dmax for the target volume were calculated, and the minimum dose (Dmin), mean dose (Dmean) and Maximum Dose (Dmax) were calculated and compared for OAR(organs at risk). For statistical analysis, T-test was performed to obtain a p-value, where the significance level was set to 0.05. Result: The HI coefficients of determination(R2) of S-IMRT and VMAT were 0.9423 and 0.8223, respectively, indicating a relatively clear correlation, and PTV Dmax was found to increase up to 2.8% as the volume of a given gas parameter increased. In case of OAR evaluation, the dose in the bladder did not change with gas volume while a significant dose difference of more than Dmean 700 cGy was confirmed in rectum using both treatment plans at gas volumes of 1.0 cm or more. In all values except for Dmean of bladder, p-value was less than 0.05, confirming a statistically significant difference. Conclusion: In the case of gas generation not considered in the reference treatment plan, as the amount of gas increased, the dose difference at PTV and the dose delivered to the rectum increased. Therefore, during radiation therapy, it is necessary to make efforts to minimize the dose transmission error caused by a large amount of gas volumes in the rectum. Further studies will be necessary to evaluate dose transmission by not only varying the gas volume but also where the gas was located in the treatment field.

목 적: 본 연구에서는 자궁경부암 방사선치료 시 전산화치료계획에 없던 직장 내 가스 용적 변화에 따른 선량변화를 비교 평가하고자 한다. 대상 및 방법: 인체모형 팬텀(Anderson Research Laboratories Inc, RANDOTM phantom, USA)의 전산화 단층촬영 영상에 전산화치료계획시스템(EclipseTM Treatment Planning System, Varian, Palo Alto, version 15.6, USA)으로 9개의 필드를 이용한 정적 세기조절방사선치료계획(Static Intensity Modulated Radiation Therapy, S-IMRT)과 Full arc로 두 방향의 체적변조회전방사선치료계획(Volumetric Modulated Arc Therapy, VMAT)을 수립하였다. 임의의 가스 변수는 0.5 cm 단위로 2.0 cm까지 변화를 주어 계획표적체적(Planning Target Volume, PTV)에 포함될 수 있도록 하였다. 표적에 대한 처방선량지수(Conformity Index, CI), 선량균질지수(Homogeneity Index, HI), PTV Dmax를 구하였고, 손상위험장기(Organ At Risk, OAR)에 대한 최소선량(Minimum Dose, Dmin)과 평균선량((Mean Dose, Dmean), 최대선량(Maximum Dose, Dmax)을 계산하여 비교하였다. T-검정을 실시하여 p-value를 구했으며 유의수준은 0.05로 설정하였다. 결 과: S-IMRT와 VMAT의 HI 결정계수(R2)는 0.9423, 0.8223으로 상관관계가 비교적 명확하였고, PTV Dmax 결과 임의의 가스 용적이 커질수록 최대 2.8%까지 증가하는 것으로 나타났다. OAR의 경우 두 전산화치료계획 모두 방광에서 유의한 차이가 없었고, 직장의 경우 +1.0 cm 이상의 가스 용적에서 두 전산화치료계획 모두 Dmean 700 cGy 이상의 유의한 선량 차이가 나타났다. 방광의 Dmean을 제외한 모든 값에서 p-value 0.05 이하로 통계적인 유의한 차이를 확인하였다. 결 론: 기준 전산화치료계획에 없던 가스 발생 시 가스 용적 크기가 커질수록 PTV의 선량 변화와 직장에 전달되는 선량이 증가하였다. 방사선치료 진행 시 직장 가스의 용적이 클 경우 발생 할 수 있는 선량 전달 오류를 최소화하기 위한 노력이 반드시 필요한 것으로 판단되었다. 향후 가스 용적의 다양한 크기와 위치를 변수로 설정하여 추가적인 연구가 진행되어진다면 유익한 평가가 이루어 질 수 있을 것으로 사료된다.

Keywords

References

  1. Kyu-Won Jung, Young-Joo Won, Hyun-Joo Kong, et al.: Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2016. Official Journal of Korean Cancer Association 2019;51(2):417-430 https://doi.org/10.4143/crt.2019.138
  2. William Small, Monica AB, Linus TC, et al.: Cervical Cancer. A Global Health Crisis. American Cancer Society 2017;123:2404-12
  3. Yang Jian, Cai Haoyang, Xiao, et al.: Effect of radiotherapy on the survival of cervical cancer patients. SEER 2019;98(30);e16421
  4. Michael JZ, Zvi Fuks, Laura Happersett, et al.: Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiotherapy and Oncology, 2000 Jun;55(3):241-9 https://doi.org/10.1016/S0167-8140(99)00100-0
  5. Michael JZ, Zvi Fuks, Margie Hunt, et al.: High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys, 2002;53(5):1111-6 https://doi.org/10.1016/S0360-3016(02)02857-2
  6. Xue Jiang1, Ying Chen1, Junqing Liu1, et al.: Reduction in rectal doses of pelvic radiotherapy with excessive rectal gas extraction, Ann Palliat Med 2021;10(6):7062-7068 https://doi.org/10.21037/apm-20-1063
  7. Ha Min Yong, Son Sang Jun, Kim Chan Yong, et al.: Analysis of the cause of dose delivery errors due to changes in abdominal gas volume during MRgART pancreatic cancer. Korean Society for Radiation Therapy 2020;32;73-83
  8. Qurat-ul-Ain Shamsi, Khalid Iqbal, Shagufta Jabeen, et al.: To analyse target volume variations during SIB-IMRT of squamous cell carcinoma of uterine cervix. Journal of Radiotherapy in Practice 2021;20(2):183-188 https://doi.org/10.1017/S1460396920000217
  9. A. Cree, Y. Song, M. Dubec, et al.: Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. American Association of Physicists in Medicine. 2020;48;414-426
  10. Jane Shortall, Eliana VO, Robert Chuter et al.: Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations. American Association of Physicists in Medicine 2019;46(12);5807-5815
  11. Thomas Berger, Jorgen BBP, Jacob CL, et al.: Impact of bowel gas and body outline variations on total accumulated dose with intensity-modulated proton therapy in locally advanced cervical cancer patients. ACTA 2017;56(11):1472-1478
  12. R. Jadon, C.A. Pembroke, C.L. Hanna et al.: A Systematic Review of Organ Motion and Image-guided Strategies in External Beam Radiotherapy for Cervical Cancer. Elsevier Ltd. 2014;26(4);185-96 https://doi.org/10.1016/j.clon.2013.11.031
  13. Ebert MA, spry NA : Dose perturbation by air cavities in megavoltage photon beams: Implications for cavity surface doses. Australasian Radiology 2001;45(2);205-210 https://doi.org/10.1046/j.1440-1673.2001.00900.x