• Title/Summary/Keyword: target uncertainties

Search Result 147, Processing Time 0.029 seconds

Strategic Planning of Carbon Capture & Storage (CCS) Infrastructure Considering the Uncertainty in the Operating Cost and Carbon Tax (불확실한 운영비용과 탄소세를 고려한 CCS 기반시설의 전략적 계획)

  • Han, Jee-Hoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • A carbon capture and storage (CCS) plays a very important role to reduce $CO_2$ dramatically in $CO_2$ emission sources which are distributed throughout various areas. Numerous research works have been undertaken to analyze the techno-economic feasibility of planning the CCS infrastructure. However, uncertainties such as $CO_2$ emissions, $CO_2$ reduction costs, and carbon taxes may exist in various impact factors of the CCS infrastructure. However, few research works have adopted these uncertainties in designing the CCS infrastructure. In this study, a two-stage stochastic programming model is developed for planning the CCS infrastructure under uncertain operating costs and carbon taxes. It can help determine where and how much $CO_2$ to capture, store or transport for the purpose of minimizing the total annual $CO_2$ reduction cost in handling the uncertainties while meeting the $CO_2$ mitigation target. The capability of the proposed model to provide correct decisions despite changing the operating costs and carbon taxes is tested by applying it to a real case study based on Korea. The results will help to determine planning of a CCS infrastructure under uncertain environments.

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.

RF Seeker Measurement modeling using ISAR Image (ISAR 영상을 이용한 RF탐색기 측정치 모델링)

  • Ha, Hyun-Jong;Park, Woosung;Jung, Ki-Hwan;Park, Sang-Sup;Koh, Il-Suek;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.40-48
    • /
    • 2015
  • In this paper, we suggest a measurement modeling of the RF seeker using the ISAR(Inverse Synthetic Aperture Radar) image. Reference scattering points are extracted first from ISAR images which are changed according to target attitude. And then uncertainties included in RF seeker measurement such as noise strength, blink, and boresight error are added to the reference scattering points. The proposed measurement model of the RF seeker can be used to develop various kinds of target tracking algorithms.

Kinematic Method of Camera System for Tracking of a Moving Object

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.145-149
    • /
    • 2010
  • In this paper, we propose a kinematic approach to estimating the real-time moving object. A new scheme for a mobile robot to track and capture a moving object using images of a camera is proposed. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Antenna Control System Using Step Tracking Algorithm with H$_{\infty}$ Controller

  • Cho, Chang-Ho;Lee, Sang-Hyo;Kwon, Tae-Yong;Lee, Cheol
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • The outdoor antenna servo system is subject to has significant torque disturbances from wind pressures and gusts on the antenna structures, as well as bearing and aerodynamic frictions. This control system should provide a sharp directivity in spite of the environmental disturbances and internal uncertainties. Therefore, the implementation of a real-time controller is necessary for the precise generation of the reference signal and robust tracking performance. In this paper, the discrete-time controller for the quick tracking of a target communication satellite is designed by applying the sampled-data $H_{\infty}$ control theory along with the reference signal generated by an improved conventional step-tracking algorithm. The sampled-data $H_{\infty}$controller demonstrates superior robustness for the longer sampling period when compared with a simple PID controller.

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

Implementation of Tracking and Capturing a Moving Object using a Mobile Robot

  • Kim Sang-joo;Park Jin-woo;Lee Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.444-452
    • /
    • 2005
  • A new scheme for a mobile robot to track and capture a moving object using camera images is proposed. The moving object is assumed to be a point-object and is projected onto an image plane to form a geometrical constraint equation that provides the position data of the object based on the kinematics of the active camera. Uncertainties in position estimation caused by the point-object assumption are compensated for using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. In this paper, the experimental results of the tracking and capturing of a target object with the mobile robot are presented.

Modified Sliding Mode Control for Ultra-precision Positioning System (나노급 초정밀 위치결정 시스템에 대한 슬라이딩 모드 제어기 설계)

  • Choi, In-Sung;Kim, Hyung-Suk;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.348-350
    • /
    • 2006
  • In this paper, we design a new controller for an ultra-precision positioning system. In general, time optimal control enables to reach a target position faster than others. However it shows a weakness to chattering effect. In order to solve the problem, a new control algorithm based on sliding mode control is proposed. The suggested controller is composed of LQR control and sliding mode control. By performing some simulations, we prove that the proposed controller is more robust than time optimal control under the circumstance of parameter uncertainties and external disturbances.

  • PDF

Evaluation of Partial Safety Factors of Armor Units by Inverse-Reliability Analysis (역해석법에 의한 피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.149-156
    • /
    • 2008
  • A reliability model of Level II AFDA is developed to analyze the stability of armor units on the sloped coastal structures. Additionally, the partial safety factors of random variables related to armor units can be straightforwardly evaluated by applying the inverse-reliability method in which influence coefficients and uncertainties of random variables, and target probability of failure are combined directly. In particular, a design equation for armor units is derived in terms of the same criteria as deterministic design method in order to apply the reliability-based design method of Level I without some understanding to the reliability analysis. Finally, it is confirmed that several results redesigned by the reliability-based design method of Level I have satisfactorily agreement with results of CEM as well as those of Level II AFDA.

  • PDF

A Study on Reliability of Current Ultimate Strength Design for Reinforced Concrete (현행(現行) 철근(鐵筋)콘크리트 극한강(極限强) 설계법(設計法)의 신뢰성(信賴性)에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.3-11
    • /
    • 1982
  • Reliability analysis methods have been employed in this study to determine the safety index ${\beta}$ for flexure associated with reinforced concrete designs that are in accordance with current USD code of Korea. In reliability analysis, the mean first-order second-moment methods are employed. The following specific conclusions can be drawn from this study; 1) Levels of safety for reinforced concrete design, measured by ${\beta}$, vary from 2.8 to 3.8 in flexure depending on the limit state, the ratio of live load to dead load and the uncertainties. 2) Target reliability ${\beta}$ associated with reinforced concrete beams in flexure is assumed to be 3.5~4.0 in Korea. 3) Load factors and resistance factors in flexure associated with the current provisions contained in USD code generally seem to be too high. The writer concluded the factors as following; ${\phi}=0.8,\;{\gamma}_D=1.1\;{\gamma}_L=1.75$.

  • PDF