• Title/Summary/Keyword: target uncertainties

Search Result 147, Processing Time 0.021 seconds

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Iterative-R: A reliability-based calibration framework of response modification factor for steel frames

  • Soleimani-Babakamali, Mohammad Hesam;Nasrollahzadeh, Kourosh;Moghadam, Amin
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • This study introduces a general reliability-based, performance-based design framework to design frames regarding their uncertainties and user-defined design goals. The Iterative-R method extracted from the main framework can designate a proper R (i.e., response modification factor) satisfying the design goal regarding target reliability index and pre-defined probability of collapse. The proposed methodology is based on FEMA P-695 and can be used for all systems that FEMA P-695 applies. To exemplify the method, multiple three-dimensional, four-story steel special moment-resisting frames are considered. Closed-form relationships are fitted between frames' responses and the modeling parameters. Those fits are used to construct limit state functions to apply reliability analysis methods for design safety assessment and the selection of proper R. The frameworks' unique feature is to consider arbitrarily defined probability density functions of frames' modeling parameters with an insignificant analysis burden. This characteristic enables the alteration in those parameters' distributions to meet the design goal. Furthermore, with sensitivity analysis, the most impactful parameters are identifiable for possible improvements to meet the design goal. In the studied examples, it is revealed that a proper R for frames with different levels of uncertainties could be significantly different from suggested values in design codes, alarming the importance of considering the stochastic behavior of elements' nonlinear behavior.

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.

Public Managers' Decision-Making and Their Psychology on Managing Ecosystems (생태계 관리에 대한 공무원의 의사결정과 그 심리)

  • Lee, Jeongseok
    • Journal of Environmental Policy
    • /
    • v.11 no.3
    • /
    • pp.3-24
    • /
    • 2012
  • Many ecosystems in Korea are currently managed by government organizations. Thus, public managers' decision-making has great influence on the management of ecosystems in Korea, and their decision-making could influence the matter of whether the ecosystems of Korea are managed effectively. This paper regards the goal of management of ecosystems as securing the sustainablilty of target ecosystems, and investigates public managers' decision-making and their psychological attitude on the management of ecosystems. Basically, managerial activities on ecosystems have uncertainties and usually public managers utilize the knowledge of law, science, intergovernmental relations, and local governance as their references for decision-making. To elucidate public managers' managerial decision-making on ecosystems, this paper adopts some psychological theories in explaining the judgment of human beings under uncertainties. Effective ecosystem management by public managers can be judged by how public managers adopt and utilize all of the above mentioned four kinds of knowledge on ecosystem management. An important factor in order to let them utilize the four kinds of knowledge is policy support. Therefore, as conclusion, this paper recommends some relevant policy measures that can support the ecosystem management of public managers.

  • PDF

A Study on Reliability Based Design Criteria for Spiral R.C. Columns (나선(螺旋)기둥의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.11-20
    • /
    • 1983
  • This study investigates reliability based design criteria for the spiral R.C. columns, and proposes practical algorithm which is based on Ellingwood's algorithm for the reliability analysis and the derivation of reliability based design criteria. Cornell's MFOSM theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistances, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the relilability analysis and the derivation of reliability based design criteria. A target reliability (${\beta}_0=3.5$) is selected as an appropriate value by comparing the values used in foreign countries and by analyzing, the reliability levels of our current USD and WSD design standards. Then, a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermore a set of allowable stresses for reinforcing steel and concrete having same level of reliability with the corresponding LRFD criteria is also propared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for spiral R.C. columns.

  • PDF

A Study on Reliability Based Design Criteria for Reinforced Concrete Bridge Superstructures (철근(鐵筋)콘크리트 도로교(道路橋) 상부구조(上部構造) 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.87-99
    • /
    • 1982
  • This study proposes a reliability based design criteria for the R.C. superstructures of highway bridges. Uncertainties associated with the resistance of T or rectangular sections are investigated, and a set of appropriate uncertainties associated with the bridge dead and traffic live loads are proposed by reflecting our level of practice. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM(Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Ellingwood's algorithm and an approximate log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the current R.C. bridge design safety provisions. A set of load and resistance factors is derived by the proposed uncertainties and the methods corresponding to the target reliability. Furthermore, a set of nominal safety factors and allowable stresses are proposed for the current W.S.D. design provisions. It may be asserted that the proposed L.R.F.D. reliability based design criteria for the R.C. highway bridges may have to be incorporated into the current R.C. bridge design codes as a design provision corresponding to the U.S.D. provisions of the current R.C. design code.

  • PDF

A Study on Reliability Based Design Criteria for Reinforced Concrete Columns (철근(鐵筋)콘크리트기둥의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 1983
  • This study is directed to propose a set of reliability based design provisions which gives more rational design for R.C. columns than the current WSD or USD standard design codes. Cornell's MFOSM theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistances, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability(${\beta}_0=4.0$) is selected as an appropriate value by comparing the values used in foreign countries and by analyzing the reliability levels of our current USD and WSD design standars. Then, a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermoere a set of allowable stresses for reinforcing steel and concrete having same level of relibity with the corresponding LRFD criteria is also propared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for R.C. columns and may be desirable to introdue into the current WSD and USD provision of R.C. column design.

  • PDF

Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets (불확실 지상 표적의 인공지능 기반 위협도 평가 연구)

  • Jin, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.305-313
    • /
    • 2021
  • The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis (도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석)

  • Lee, Hae Sung;Song, Sang Won;Kim, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • This paper brings up fallacy of material factors specified for the design of concrete members in the current Korean limit state design code for highway bridges, and proposes new material factors based on a robust optimization scheme to overcome the fallacy. It is shown that the current load factors in the code and the proposed material factors lead to a much higher reliability index than the target index. The load factors are adjusted to yield the target reliability index using the inverse reliability analysis. A reliability-based approach following the basic concept of Eurocode is formulated to determine material factors as well as load factors. The load-material factors obtained by the proposed reliability-based approach yield a lower reliability level than the target index. Drawbacks of the basic concept of Eurocode are discussed. It is pointed out that differences in the uncertainties between materials and members may cause the lower reliability index of concrete member than the target.