• Title/Summary/Keyword: target lifetime

Search Result 74, Processing Time 0.025 seconds

Development and optimization of C-11 gas target system in KOTRON-13 cyclotron (KOTRON-13 사이클로트론의 고효율C-11 가스 표적장치)

  • Lee, Hong-Jin;Lee, Won-Kyeong;Park, Jun-Hyung;Moon, Byung-Seok;Lee, In-Won;Chae, Sung-Ki;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Purpose: The KOTRON-13 cyclotron was developed in South Korea and was introduced to regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce carbon-11 isotope so far. We herein study how to develop and optimize an effective carbon-11 target system in the KOTRON-13 cyclotron by changing cooling system, combing with fluorine-18 target and evaluating beam currents. Materials and Method: To develop the optimal carbon-11 target and an effective cooling system, we designed the carbon-11 target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we evaluated the yield of carbon-11 production at different beam currents and the stability of the operation of the KOTRON-13 cyclotron. Results: The production of carbon-11 was enhanced from about 1.700 mCi ($50{\mu}A$) to 2,000 mCi ($60{\mu}A$) on the carbon-11 target which developed by seoul national university bundang hospital (SNUBH) and Samyoung Unitech. Additionally, the cooling condition was showed stable to produce carbon-11 under high beam current. Conclude: The carbon-11 target system of the KOTRON-13 cyclotron was successfully developed and improved carbon-11 production. Consequently, the operation of carbon-11 target system was highly effective and stable compare with other commercial cyclotrons. Our results are believed that this optimal carbon-11 target system will be helpful for the routine carbon-11 production in the KOTRON-13 cyclotron.

  • PDF

A Novel Random Scheduling Algorithm based on Subregions Coverage for SET K-Cover Problem in Wireless Sensor Networks

  • Muhammad, Zahid;Roy, Abhishek;Ahn, Chang Wook;Sachan, Ruchi;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2658-2679
    • /
    • 2018
  • This paper proposes a novel Random Scheduling Algorithm based on Subregion Coverage (RSASC), to solve the SET K-cover problem (an NP-complete problem). SET K-cover problem distributes the set of sensors into the maximum number of mutually exclusive subsets (MESSs) in such a way that each of them can be scheduled for lifetime extension of WSN. Sensor coverage divides the target region into different subregions. RSASC first sorts the subregions in the ascending order concerning their sensor coverage. Then, it forms the subregion groups according to their similar sensor coverage. Lastly, RSASC ensures the K-coverage of each subregion from every group by randomly scheduling the sensors. We consider the target-coverage and area-coverage applications of WSN to analyze the usefulness of our proposed RSASC algorithm. The distinct quality of RSASC is that it utilizes less number of deployed sensors (33% less) to form the optimum number of MESSs with the higher computational speed (saves more than 93% of the time) as compared to the existing three algorithms.

Assessment of toxic metals in vegetables with the health implications in Bangladesh

  • Islam, Md. S.;Ahmed, Md. K.;Proshad, Ram;Ahmed, Saad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.241-254
    • /
    • 2017
  • This study was conducted to investigate the levels of heavy metals in twelve species of vegetables and assessment of health risk. Samples were analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd and Pb in vegetables species were 0.37-5.4, 0.03-17, 0.35-45, 0.01-2.6, 0.001-2.2, and 0.04-8.8 [mg/kg, fresh weight (fw)], respectively. The concentrations of As, Cd and Pb in most vegetable species exceeded the maximum permissible levels, indicating unsafe for human consumption. Health risks associated with the intake of these metals were evaluated in terms of estimated daily intake (EDI), and carcinogenic and non-carcinogenic risks by target hazard quotient (THQ). Total THQ of the studied metals from most of the vegetables species were higher than 1, indicated that these types of vegetables might pose health risk due to metal exposure. The target carcinogenic risk (TR) for As ranged from 0.03 to 0.48 and 0.0004 to 0.025 for Pb which were higher than the USEPA acceptable risk limit (0.000001) indicating that the inhabitants consuming these vegetables are exposed to As and Pb with a lifetime cancer risk. The findings of this study reveal the health risks associated with the consumption of heavy metals through the intake of selected vegetables in adult population of Bangladesh.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Photosensitized oxidative damage of human serum albumin by water-soluble dichlorophosphorus(V) tetraphenylporphyrin

  • Ouyang, Dongyan;Hirakawa, Kazutaka
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.41-44
    • /
    • 2015
  • Biomolecular photo-damaging activity of a water-soluble cationic porphyrin was examined using human serum albumin (HSA), a water-soluble protein as a target biomolecule model by a fluorometry. Dichlorophosphorus(V) tetraphenylporphyrin ($Cl_2P(V)TPP$), was synthesized and used as a photosensitizer. This porphyrin could bind to HSA and cause the photosensitized oxidation of HSA through the singlet oxygen generation and the oxidative photo-induced electron transfer (ET). Near infrared emission spectroscopy demonstrated the photosensitized singlet oxygen generation by this porphyrin. Decrement of the fluorescence lifetime of $Cl_2P(V)TPP$ by HSA supported the ET mechanism. Furthermore, the estimated Gibb's energy indicated that the ET mechanism is possible in the terms of energy. Because oxygen concentration in cancer cell is relatively low, ET mechanism is considered to be advantageous for photosensitizer of photodynamic therapy.

Development of Lifetime Assessment and Rehabilitation Cost Calculation Methods for Overseas ROMM Project

  • Hyun, Jung-Seob;Kim, Doo-Young;Hwang, Kwang-Won;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Regarding the implementation of ROMM project (Rehabilitation, Operation, Maintenance & Management), which is one of overseas development projects, it is very important to diagnose the exact current status of aged thermal power plant. However, when people visit the power plant for the purpose of prediagnosis to implement the ROMM project, most target power plants for diagnosis, in general, are under operation. This can be a big interference factor to diagnose the exact current status of power plants. Therefore, in order to solve such interference factor, based on the 30 years of know-how in the field, the present study has developed a regression curve for a simple life time assessment and the calculation of rehabilitation cost that may be used as a reference relatively for the quantitative diagnosis on the status of a relevant power plant even during the operation of the power plant.

Architecture of the Solar-powered Sensor System for Distributed-storage Wireless Sensor Network (분산 저장형 센서 네트워크를 위한 태양 에너지 기반 센서 시스템의 구조)

  • Noh, Dong-Kun;Yoon, Ik-June
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.843-845
    • /
    • 2011
  • Due to the short lifetime of the battery-based sensor network, study on the environmental energy-harvesting sensor network is being performed widely. In this paper, we analyze the system-level requirements on the sensor node which is needed for the efficient solar-powered wireless sensor network for the target application. In addition, we explain how the HW/SW components of our real solar-powered sensor node can satisfy the requirements mentioned above.

  • PDF

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.

Exploiting Memory Sequence Analysis to Defense Wear-out Attack for Non-Volatile Memory (동작 분석을 통한 비휘발성 메모리에 대한 Wear-out 공격 방지 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.86-91
    • /
    • 2022
  • Cache bypassing is a scheme to prevent unnecessary cache blocks from occupying the capacity of the cache for avoiding cache contamination. This method is introduced to alleviate the problems of non-volatile memories (NVMs)-based memory system. However, the prior works have been studied without considering wear-out attack. Malicious writing to a small area in NVMs leads to the failure of the system due to the limited write endurance of NVMs. This paper proposes a novel scheme to prolong the lifetime with higher resistance for the wear-out attack. First, the memory reference pattern is found by modified reuse distance calculation for each cache block. If a cache block is determined as the target of the attack, it is forwarded to higher level cache or main memory without updating the NVM-based cache. The experimental results show that the write endurance is improved by 14% on average and 36% on maximum.

Energy Aware Landmark Election and Routing Protocol for Grid-based Wireless Sensor Network (그리드 기반 무선센서네트워크에서 에너지 인지형 Landmark 선정 및 라우팅 프로토콜)

  • Sanwar Hosen, A.S.M.;Cho, Gi-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.177-180
    • /
    • 2011
  • In practice, it is well known that geographical and/or location based routing is highly effective for wireless sensor network. Here, electing some landmarks on the network and forwarding data based on the landmark is one of the good approaches for a vast sensing field with holes. In the most previous works, landmarks are elected without considering the residual energy on each sensor. In this paper, we propose an Energy aware Landmark Election and Routing (ELER) protocol to establish a stable routing paths and reduce the total power consumption. The proposed protocol makes use of each sensor's energy level on electing the landmarks, which would be utilized to route a packet towards the target region using greedy forwarding method. Our simulation results illustrate that the proposed scheme can significantly reduce the power dissipation and effectively lengthen the lifetime of the network.