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Abstract 
 

This paper proposes a novel Random Scheduling Algorithm based on Subregion Coverage 
(RSASC), to solve the SET K-cover problem (an NP-complete problem). SET K-cover 
problem distributes the set of sensors into the maximum number of mutually exclusive subsets 
(MESSs) in such a way that each of them can be scheduled for lifetime extension of WSN. 
Sensor coverage divides the target region into different subregions. RSASC first sorts the 
subregions in the ascending order concerning their sensor coverage. Then, it forms the 
subregion groups according to their similar sensor coverage. Lastly, RSASC ensures the 
K-coverage of each subregion from every group by randomly scheduling the sensors. We 
consider the target-coverage and area-coverage applications of WSN to analyze the usefulness 
of our proposed RSASC algorithm. The distinct quality of RSASC is that it utilizes less 
number of deployed sensors (33% less) to form the optimum number of MESSs with the 
higher computational speed (saves more than 93% of the time) as compared to the existing 
three algorithms. 
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1. Introduction 

Wireless sensor networks (WSNs) are widely being used in a variety of applications 
such as military surveillance, industrial process automation, traffic control, environmental 
monitoring, physical security and medical care. The lifetime of a WSN (the time during which 
it senses the region of interest under some coverage constraint) is a key performance indicator 
to determine its efficiency. Energy consumption must be restricted to achieve the maximum 
operating time of WSN because battery-powered sensors are difficult to recharge or replace 
[1-5]. 

Coverage ensures that each point of the target region must be completely sensed by WSN. 
Position and sensing range of sensors are used as inputs to the coverage finding algorithms [6]. 
Coverage applications are usually categorized as target coverage, area coverage and barrier 
coverage [2], [3], [7]. Target-coverage focuses on sensing different points in a certain area. In 
the area-coverage application, deployed sensors sense the whole monitored area, whereas 
barrier-coverage focuses on observing a subregion defined by two parallel curves. 

Sensor placement in the target region is usually done by using two approaches, i.e., 
random approach and deterministic approach  [8]. In random approach, sensors are randomly 
placed for surveillance application in hard-to-reach areas such as in very high-temperature or 
very low-pressure area. In deterministic approach, a prior detail of target area is already known 
to deploy each sensor one by one at a specific position. However, this approach of sensor 
deployment is time-consuming due to a large number of sensors and it cannot be adopted for 
inaccessible areas. In such circumstances, a large number of sensors are randomly thrown 
from airplane to fulfill the coverage constraint of the target region. 

Scheduling is an effective approach for extending the operational time of WSN by 
controlling the sensors actions [9]. A sensor has two operational states; an active state and a 
sleep state (also known as energy saving state). In an active state, a sensor performs all of its 
functions like sensing, data processing, and communication. Such operations dissipate 
comparatively a larger amount of energy. Different from being in an active state, a sensor 
consumes less amount of energy in the sleep state. Sensors can switch from sleep to active 
state or vice versa if needed. If a MESS fulfills the coverage constraint, remaining MESSs are 
forced to switch their sleep state in order to save energy [10, 11]. In such situations, how to 
extend the operational time of a network under coverage constraint is an important research 
topic [12].  

Several researches such as [4], [12-25] exist on energy efficient WSN. For example, the 
work in [16], proposed an improved version of Stable Election Protocol (SEP), termed as 
Prolong-SEP (P-SEP) to extend the steady duration of Fog-assisted WSN by conserving the 
stable energy utilization. P-SEP permits uniform dispersal of sensors, plan for the nomination 
of new cluster head, and lifetime extension of WSN, particularly prior to the failure of the first 
sensor. P-SEP examined two-rank heterogeneity of sensors, termed as advanced and normal 
sensors which hold the chance of becoming the cluster heads. P-SEP outperforms the 
traditional SEP, modified SEP and efficient modified SEP. The authors in [17], suggested an 
effective routing scheme based on the evaluation of existing routing approaches to achieve 
K-covered WSN and reliable data transfer with reasonable fault acceptance. They assumed 
that each sensor is well informed of its remaining energy as well as that of its neighboring 
sensors. They initially classified all sensors in terms of coverage and communicative sensors. 
Finally, they re-classified some sensors in terms of clustering and dynamic sensors. The 
authors in [18], proposed a new resource (re)assignment design which permits 
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energy-consious service function chaining for software defined network. The work in [18], 
suggested heuristic approaches with suitable time complexity to search the near-optimal 
solution for the deployment of virtual network functions, their assignment to flows and flow 
routing.  

The above works focus on the routing and scheduling to achieve the energy efficient WSN. 
SET K-cover problem is the main issue which needs to be focused. The motivation and the 
objective of this paper is to achieve optimality with reduction in computational complexity for 
improving the lifetime of WSNs. The novelity of our algorithm helps to resolve the  SET 
K-cover problem in the minimum time for the target-coverage and area-coverage applications 
of WSN. SET K-cover allocates the deployed sensors into the optimum number of MESSs 
under coverage constraint for extending the network`s lifetime. Due to a large number of 
deployed sensors, solving the SET K-cover problem is a difficult job which increases the 
computational complexity.  

Our main contribution in this paper is to propose a novel Random Scheduling Algorithm 
based on Subregion Coverage (RSASC) to search an optimum number of MESSs while 
satisfying the coverage constraint for both the target-coverage and area-coverage applications. 
The proposed RSASC works in the following way. 

a) It first distributes the target region into different subregions based on the sensor 
coverage using the algorithm in [13].  

b) Then, it combines subregions into different groups in such a way that at least one 
sensor is common in the sensing coverage of all subregions.  

c) After formation of different subregion groups, it selects each subregion one by one 
from each subregion group and schedules their sensors coverage by randomly 
assigning a number from one to α inclusive, where α is a pre-defined upper bound on 
the optimal number of MESSs. 

d) Similarly, the same process (above three steps) is repeated for other subregion groups.  
This approach of scheduling based on coverage of each subregion remarkably reduces the 

computational time for searching the maximum number of MESSs under coverage constraint. 
The distinct feature of the RSASC algorithm is that it uses the less number of deployed sensors 
(on average 33% less than the existing algorithms) to form the optimum number of MESSs 
while satisfying the coverage constraint. Moreover, the computational time taken by RSASC 
is much lesser than that of the existing algorithms. On the average, RSASC saves more than 93% 
of the running time as compared to the existing algorithms.  

The rest of our paper is organized as follows. Section 2 presents a brief related work. 
Section 3 provides the problem definition and discussions on upper bound, the division of 
target region into subregions and coverage calculation of a sensor. Section 4 explains the 
proposed RSASC in detail including the formation of subregion group, representation of 
candidate solution, fitness function, and the computational complexity. Section 5 presents the 
comparative analysis of RSASC with the existing algorithms. Section 6 is reserved for the 
conclusion and future work.  

2. Related Work 
In the literature, finding the optimum number of MESSs in a WSN is known as “SET 

K-Cover” or "Disjoint Set Covers" problem [13], [14] which are proven to be the 
non-deterministic polynomial NP-complete problems. Numerous heuristics have investigated 
this maximization problem. Cardie and Du [14] considered the target-coverage problem for 
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the surveillance application of energy efficient WSN. They proposed a mixed integer 
programming based heuristic termed as, “maximum covers using mixed integer programming 
(MCMIP)” to distribute the set of deployed sensors among optimum number of MESS while 
satisfying the coverage constraint for a set of known target points. MCMIP applies the 
brute-force search method to find the maximum number of MESS. However, MCMIP is 
infeasible for practical application because its computational complexity exponentially 
increases with the number of deployed sensors. Slijepcevic and Potkonjak [13] proposed a 
greedy deterministic approach, termed as “the most constrained minimum constrained 
covering (MCMCC)” heuristic to prolong the operational time of WSN. The computational 
complexity of MCMCC heuristic is polynomial time. However, it searches the near-optimal 
number of MESS in some cases (e.g., 80% of the best solution). 

Some studies have also investigated the SET K-Cover problem using meta-heuristics. 
Genetic algorithm (GA) [27], [28] is a population-based searching algorithm which has been 
efficiently used for solving many NP-complete problems [29]. Lai et al. [30] proposed a GA 
for the maximum disjoint set covers, termed as, GAMDSC to find the optimal number of 
MESS (𝜶) for target-coverage application of WSN. However, GAMDSC failed to search the 
optimal solution. GAMDSC consists of conventional genetic operations and scattering 
operation to ensure the presence of one critical sensor in each MESS. Computational time for 
GAMDSC lies in between MCMCC and MC-MIP. 

Hu et al. [31], suggested a mixture of GA with schedule transition operations entitled as 
“Hybrid Genetic Algorithm with Schedule Transformation (STHGA)” to optimize the 
network's duration. STHGA adopts the forward encoding scheme based on three schedule 
transformation operations i.e., mixed schedule transformation (MST), forward schedule 
transformation (FST) and critical schedule transformation (CST) operations. MST changes the 
schedule number of a redundant sensor from one MESS to another MESS. Redundant sensors 
are randomly searched for 𝐾2  times in MST. FST is used to improve the coverage of an 
incomplete MESS. In FST, redundant sensors are randomly searched for 𝐾1 times to assign an 
incomplete schedule number where 𝐾1 and 𝐾2 are two predefined parameters in [31]. CST 
ensures the coverage of critical subregions (a subregion covered by a minimum number of 
sensors) by at least one sensor in an incomplete MESS. In all of the above-mentioned 
meta-heuristics, each gene maps to a sensor, whereas its value indicates a schedule number 
which determines its association to a particular MESS. Moreover, STHGA searches an 
optimal solution in shorter computational time with better solution quality as compared to 
GAMDSC and MCMCC.  

Lin et al. [32], proposed a harmony search algorithm with multiple populations and local 
search (HSAML) to prolong the lifetime of dynamic heterogeneous WSN with energy 
harvesting sensors. HSAML considered a dynamic scenario for WSNs with 𝒏𝟏 ordinary and 
𝒎𝟏 energy-harvesting sensors in which each active sensor can be malfunctioned at any time. 
HSAML was executed for NI times, where NI is the predefined limit for the iterations, to find 
the maximum number of MESS and a local search operation for the inclusion of energy 
harvesting sensors in an active MESS. Authors in [32], validates the performance of HSAML 
over the traditional HSA algorithm. However, the problem with HSAML is that it does not 
guarantee the optimal number of MESS since there is no condition of obtaining the 𝜶 MESSs 
on its execution. 
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3. Problem Definition and Discussions 

3.1 Problem Definition 
Suppose that a group of 𝑵 sensors, 𝑺 = {𝑺𝟏,𝑺𝟐, . . . ,𝑺𝑵}, is randomly positioned in an 

𝑳 ×  𝑾 target region to cover a collection of 𝑲 immobile targets, 𝑻 = {𝑻𝟏,𝑻𝟐, . . . ,𝑻𝑲} or a 
complete 𝑳 ×  𝑾 target region. The objective of this problem is to search the optimal number 
of mutually exclusive subsets of sensors (MESS), 𝜶, subject to the following constraints: 
a) Each subset𝑫𝒊 = �𝑺𝒊𝟏,𝑺𝒊𝟐, . . . ,𝑺𝒊

|𝑫𝒊|� ⊆ 𝑺 , where 𝑫𝒊  indicates specific disjoint subset, 
whose members ensure complete coverage of K  fixed target points or whole target region 
for target-coverage or area-coverage application, respectively. Each 𝑫𝒊 becomes active to 
sense K  target points or whole target region for particular 𝒊𝒕𝒉 schedule, 𝒊 = {𝟏,𝟐, . . . ,𝜶} 
where |𝑫𝒊| is the total number of sensors in the disjoint subset for 𝒊𝒕𝒉 schedule. 

b) Each sensor must be the member of only one specific disjoint subset and satisfy Eq. 1,   
𝑫𝒊  ∩  𝑫𝒋  =  𝝓,     𝑤ℎ𝑒𝑟𝑒 𝒊 ≠ 𝒋, ∀𝒊, 𝒋 = {𝟏,𝟐, . . . ,𝜶} (1) 

    Fig. 1 depicts the 𝑵 randomly deployed sensors to achieve the complete coverage of  
𝑳 ×  𝑾 target area. Many circles in the Fig. 1 represent the sensing coverage of sensors. For 
our convenience, in this paper, we assume that each sensor has circular sensing coverage. 
However, in practical situations, it may take any irregular appearance.  

 
Fig. 1. Example showing the sensor deployment for area-coverage application 

3.2 Discussion 
The maximum number of MESSs (𝜶) and the individual time during which the sensors 

ensure the full coverage of target region, calculate the operational time of WSNs. However, in 
this paper, we assume that the duration of each MESS is same. The number of deployed 
sensors, their sensing range, and positions in the target region decides the number of MESSs. 

3.2.1 Lower and Upper Limits on Schedule Numbers 
Fig. 2 (a) to find the upper limit (𝜶). It is a matter of fact that determining the upper bound 
(𝜶) is also a famous K-coverage problem [33]. It can be seen from the Fig. 2 (a) that 10 
sensors distribute the target area into a set of ∆= 𝟐𝟎 subregions, The upper limit denoted as 𝜶, 
is the maximum number for which a WSN can be scheduled. The Eq. 2 determines the least 
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number of sensors that sense a specific point or subregion for the target-coverage or 
area-coverage case, respectively. In Eq. 2, |𝑺𝜷𝒋| represents how many sensors monitor a 
particular 𝜷𝒋 target or subregion. Whereas, ∆ shows the total number of targets or subregions 
created in the region for target-coverage or area-coverage application, respectively. 𝚿 = {𝜷𝟏,
𝜷𝟐, . . . ,𝜷𝟐𝟎}. Similarly, Fig. 2 (b) depicts the sensor coverage for each subregion 

𝜶 = 𝐦𝐢𝐧
𝒋 ={𝟏,𝟐,...,∆}

�|𝑺𝜷𝒋|� (2) 

In the area-coverage problem, a target area is distributed into different subregions as 
shown in Fig. 2 (a) to find the upper limit (𝜶). It is a matter of fact that determining the upper 
bound (𝜶) is also a famous K-coverage problem [33]. It can be seen from the Fig. 2 (a) that 10 
sensors distribute the target area into a set of ∆= 𝟐𝟎 subregions, 𝚿 = {𝜷𝟏, 𝜷𝟐, . . . ,𝜷𝟐𝟎}. 
Similarly, Fig. 2 (b) depicts the sensor coverage for each subregion. The upper limit in this 
example is two because the least number of sensors that cover a subregion is two (e.g., sensors 
𝑺𝟏  and 𝑺𝟑  cover 𝜷𝟏 ). Similarly, we can find the upper bound (𝜶)  for an area-coverage 
application using Eq. (2). In this paper, we assume that randomly deployed sensors must 
provide the complete coverage at least once for both problems. Therefore, the lower limit for 
each case considered in this paper is one. 

 
Fig. 2. (a) Target area distribution into a set of ∆= 𝟐𝟎 subregions, 𝜳 = {𝜷𝟏, 𝜷𝟐, . . . ,𝜷𝟐𝟎} by 10 

sensors shown by different colored circles. (b) Sensors coverage for each subregion. 

 
Fig. 3. Example of coverage calculation of sensors by dividing an area into the small square boxes with 
a grid size 𝒅. 𝑨𝟏, 𝑨𝟐 and 𝑨𝟑 indicate the coverage areas of three subregions created by two sensors 𝑺𝟏 

and 𝑺𝟐. (a) and (b) show the effect of grid size (d) on coverage calculation. 
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3.2.2 Sensor Coverage Calculation  
Fig. 3 indicates the sensing coverage of two sensors 𝑺𝟏 and 𝑺𝟐  in terms of subregions and 

small square boxes in the target area. Sensor 𝑺𝟏 covers the subregion areas 𝑨𝟏 and 𝑨𝟐 while 
𝑺𝟐  covers subregion areas 𝑨𝟐  and 𝑨𝟑 . A square box in the sensing region of interest is 
supposed to be covered if its four corners lie within the sensing range of sensor as shown in 
Fig. 3 (a) and (b). 

In Fig. 3 (a), the entire monitored region is distributed into 16 square boxes according to 
the specific grid size. Similarly, in Fig. 3 (b), a target area is distributed into 64 square boxes 
since grid size is one-fourth of the grid size considered in Fig. 3 (a). It can be seen from the 
figure that coverage approximation of sensor is better in Fig. 3 (b) as compared to Fig. 3 (a) 
due to smaller grid size. In Fig. 3 (a), two sensors cover six out of 16 boxes, which is 37.5% of 
the target area whereas, in Fig. 3 (b), same sensors cover 31 out of 64 boxes, which is 48.44% 
of the target region. Thus, each subregion can be considered as a target after calculating their 
coverage in terms of the square box [13]. Then, the subregions can be used for sensor coverage 
calculation. 

4. Proposed Random Scheduling Algorithm based on Subregion 
Coverage 

In this paper, we propose a novel Random Scheduling Algorithm based on Subregion 
Coverage (RSASC) for maximizing the operational time of WSN considering the 
target-coverage and area-coverage applications. In this section, we first distribute the 
subregions into groups. Secondly, we present the representation of candidate solution for our 
problem. Thirdly, we implement the RSASC step-by-step including the initialization and the 
evaluation of fitness function. Finally, we present the time complexity of each algorithm. 

4.1 Formation of Subregion Groups 
The formation of subregion groups plays a vital role in searching the optimal number of 

MESS. Assume that set 𝚿 = {𝜷𝟏,𝜷𝟐, . . . ,𝜷𝚫} represents the set of subregions and 𝑸𝐢 is the set 
of sensors, which senses the 𝒊𝒕𝒉 subregion in set 𝚿. We form the 𝑷 disjoint groups of 𝚫 
subregions as follows. 
a) Sort the subregions in ascending order with respect to their sensor coverage. For example, 

𝚫 = 𝟐𝟎 subregions in Fig. 2 (a) are sorted in ascending order as tabulated in Table 1 
according to their respective sensor coverage shown in Fig. 2 (b).  

 

Table 1. Sorted subregions with their coverage and subregion groups for example depicted in Fig. 2 (a) 
and (b) 

Sorted subregions with their coverage Subregion groups Sensor coverage groups 
𝛽1= {𝑆1, 𝑆3} 
𝛽2= {𝑆3, 𝑆7} 
𝛽5= {𝑆3, 𝑆9} 
𝛽8= {𝑆2, 𝑆9} 
𝛽9= {𝑆2, 𝑆4} 
𝛽10= {𝑆2, 𝑆5} 
𝛽14= {𝑆5, 𝑆6} 
𝛽15= {𝑆5, 𝑆10} 
𝛽18= {𝑆7, 𝑆8} 
𝛽19= {𝑆7 ,𝑆10} 

𝛽3= {𝑆1, 𝑆3,𝑆9} 
𝛽4= {𝑆3,𝑆7,𝑆9} 
𝛽6= {𝑆3, 𝑆7, 𝑆10} 
𝛽7= {𝑆2, 𝑆3, 𝑆9} 
𝛽11= {𝑆2, 𝑆4, 𝑆9} 
𝛽12= {𝑆2, 𝑆5, 𝑆9} 
𝛽13= {𝑆2, 𝑆5 , 𝑆10} 
𝛽16= {𝑆5, 𝑆6, 𝑆10} 
𝛽17= {𝑆5, 𝑆7,𝑆10} 
𝛽20= {𝑆7, 𝑆8,𝑆10} 

𝐺𝑠1 = {𝛽1,𝛽2,𝛽5,𝛽3,𝛽4,𝛽6,𝛽7} 
𝐺𝑠2 = {𝛽8,𝛽9,𝛽10,𝛽11,𝛽12,𝛽13} 

𝐺𝑠3 = {𝛽14,𝛽15,𝛽16,𝛽17} 
𝐺𝑠4 = {𝛽18,𝛽19,𝛽20} 

{2,2,2,3,3,3,3} 
{2,2,2,3,3,3} 

{2,2,3,3} 
{2,2,3} 
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b) For each 𝑮𝒔
𝒋  subregion group where 𝒋 𝝐 𝑷 , first sorted subregion is selected as first 

member, e.g. for first group 𝑮𝒔𝟏, 𝜷𝟏= {𝑺𝟏,𝑺𝟑} is selected as first member. After that add 
every sorted subregion into 𝑮𝒔

𝒋  if it satisfies the Eq. (3). 
𝑸𝟏
𝒋  �𝑸𝒊

𝒋 ≠  𝝓,   ∀𝒊 ∈  𝚿 𝑎𝑛𝑑 ∀𝒋 ∈  𝐏 (3) 

It can be seen from the sorted subregions set 𝚿𝒔 in Table 1 that 𝜷𝟐, 𝜷𝟓, 𝜷𝟑, 𝜷𝟒, 𝜷𝟔, and 
𝜷𝟕, satisfy the Eq. (3) because either 𝑺𝟏 or 𝑺𝟑 is common in their sensor coverage. Therefore, 
𝑮𝒔𝟏 = {𝜷𝟏,𝜷𝟐,𝜷𝟓,𝜷𝟑,𝜷𝟒,𝜷𝟔,𝜷𝟕}.  
c) After formation of 𝑮𝒔𝟏, eliminate all subregions of 𝑮𝒔𝟏 from the sorted subregion set 𝚿𝒔 to 

form new groups. For example, after eliminating the members of 𝑮𝒔𝟏, the number of 
subregions in set 𝚿𝒔 is decreased from 20 to 13.  
We form the other subregion groups 𝑮𝒔

𝒋+𝟏 untill set 𝚿𝒔 = 𝝓 by repeating the above three 
steps. For example, we form the second subregion group 𝑮𝒔𝟐 as follows. 𝜷𝟖= {𝑺𝟐,𝑺𝟗} from set 
𝚿𝒔 is selected as first member. Other members of the second subregion group are 𝜷𝟗, 𝜷𝟏𝟎, 
𝜷𝟏𝟏, 𝜷𝟏𝟐,  and 𝜷𝟏𝟑. Thus, 𝑮𝒔𝟐 = {𝜷𝟖,𝜷𝟗,𝜷𝟏𝟎,𝜷𝟏𝟏,𝜷𝟏𝟐,𝜷𝟏𝟑} and the number of subregions in 
set 𝚿𝒔 is further reduced from 13 to 7. Similarly, we create the third and fourth subregion as 
𝑮𝒔𝟑 = {𝜷𝟏𝟒,𝜷𝟏𝟓,𝜷𝟏𝟔,𝜷𝟏𝟕} and 𝑮𝒔𝟒 = {𝜷𝟏𝟖,𝜷𝟏𝟗,𝜷𝟐𝟎}. It can be seen from all the subregion 
groups that sensor coverage for first subregion of each group will always satisfy the Eq. (4). 

𝑸𝟏
𝒊  �𝑸𝟏

𝒋  =  𝝓,   ∀𝒊, 𝒋 ∈ 𝐏 (4) 

After formation of subregion groups, each subregion group must satisfy the Eq. (5) and 
(6). Eq. (5) says that the number of sensors covering the first subregion of each group will 
always be greater than or equal to the value of an upper bound (𝜶). It is clear in each subregion 
group that the number of sensors which covers the first subregion is 𝜶 = 𝟐. Fig. 4 (a) 
illustrates the formation of subregion groups according to above-mentioned approach whereas 
Fig. 4 (b) indicates the %age coverage of each subregion group e.g., %age coverage of group 
𝑮𝒔𝟏 = 𝟕

𝟐𝟎
≅ 𝟑𝟓% as set 𝑮𝒔𝟏 comprises of seven out of 20 subregions. Similarly, we can form 

the groups for any value of the 𝜶 subregions created in the target area. Algorithm 1 presents 
the complete pseudo-code for the formation of subregion groups. 

 
Fig. 4. (a) depicts the subregion groups with their corresponding subregions shown with different colors 
for example illustrated in Fig. 2. (b) indicates the %age coverage of each subregion group with respect 

to their total number of subregions. 
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𝑸𝟏
𝒊  ≥  𝜶,   ∀𝒊 ∈ 𝐏 (5) 

  
�𝑸𝒗

𝒊 �  ≥  �𝑸𝟏
𝒊 �  ≥  𝜶,   ∀𝒗 > 1, and ∀𝒊 ∈ 𝐏 (6) 

4.2 Representation of Candidate Solution 
RSASC is not a population-based algorithm. Therefore, the candidate solution consists of 

𝑵 dimensions and each dimension indicates a sensor. The candidate solution represented by 𝑿 
is given in Eq. (7).  

𝑿 = {𝒙𝟏,𝒙𝟐, . . . ,𝒙𝑵}  (7) 
Where 𝒙𝑵 ∈  {𝟏,𝟐, … ,𝜶}, each dimension 𝒙 ∈ 𝑿 in Eq. (7) represents a sensor and the 

value of 𝒙 shows the particular schedule or MESS.  A group of dimensions in 𝑿 having the 
same value, which completely covers all target points or whole target region forms a MESS. 
Therefore, for an optimum solution, 𝑵 sensors must be grouped into 𝜶 complete MESSs. 

4.3 Initialization 

RSASC initially allocates a zero to each dimension in candidate solution X, i.e., 𝑿 =
{𝟎,𝟎, . . . ,𝟎},  meaning that all 𝑵  randomly deployed sensors are switched off. STHGA 
initializes the population of 𝒎 chromosomes as one, i.e., 𝑿 = {𝟏,𝟏, . . . ,𝟏} meaning that all 
deployed sensors are in active state. A chromosome in GA is a candidate solution, which 
consists of 𝑵 elements known as genes. In each of the GA based algorithm, each gene 
represents a sensor and its value shows membership of particular MESS. Different from 
RSASC and STHGA, GAMDSC initializes each gene of 𝒎 chromosomes with different 
random numbers in the range [𝟏,𝜶] inclusive. In HSAML, a harmony (candidate solution) 
consists of 𝑵 elements known as musicians, whereas their values represent the unique IDs of 
the deployed sensors. Each harmony consists of randomly stored sensor IDs. 

4.4 Fitness Function 
For a target-coverage application, the fitness function (𝑭) for a candidate solution 𝑿 is 
defined as 

𝑭 = ���
�⋃ 𝑪𝒏𝑵

𝒏=𝟏 ∀𝒙𝒏=𝒊 �
𝑲

�  = 𝟏�
𝜶

𝒊=𝟏

 (8) 

In Eq. (8), 𝑪𝒏  shows the coverage of  𝒏𝒕𝒉  sensor and 𝑪𝒏  ∈  {𝟏,𝟐, . . .𝑲}  for 
target-coverage application. Similarly, for an area-coverage application, the fitness function 
(𝑭) is defined as 

𝑭 = ���
�⋃ 𝑪𝒏𝑵

𝒏=𝟏 ∀𝒙𝒏=𝒊 �
∆

�  = 𝟏�
𝜶

𝒊=𝟏

 (9) 

In Eq. (9), 𝑪𝒏  ∈  {𝟏,𝟐, . . .∆} for area-coverage application. For every 𝒊𝒕𝒉  MESS, the 
coverage of all dimensions in 𝑿 having same value 𝒊 is unionized in terms of target points or 
subregions. The number of unionized target points or subregions must be equal to 𝑲 or ∆ for 
target-coverage and area-coverage applications, respectively, in order to ensure complete 
coverage for 𝒊𝒕𝒉  MESS. Therefore for each 𝒊𝒕𝒉  MESS, the statement presented in square 
brackets must be equal to 1 if the condition is fulfilled, and 0 otherwise. The coverage 𝑪 of ten 
sensors in terms of subregions is depicted in Fig. 2. Worst case time complexity of fitness 
evaluation is 𝑶(𝑵 ×  𝑲) for target-coverage application and 𝑶(𝑵 ×  ∆) for area-coverage 
application, where 𝑵  shows the number of sensors, 𝑲  is number of target points for 
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target-coverage problem and  ∆ is the total number of subregions formed in monitored region 
for area-coverage application. Similarly, HSAML [32], STHGA [31], and GAMDSC [30] use 
same equations to evaluate the fitness function for this SET K-Cover problem. Therefore, the 
computational complexity of three algorithms for calculating the fitness function is same. 

 
Algorithm 1. Formation of Subregion Groups 
1: Initialize the set of subregions 𝚿 
2: Initialize the cell 𝑪 which stores the sensor coverage for each 𝜷𝒊 in set 𝚿 
3: Initialize the set 𝚿𝑠  of sorted subregions in ascending order with respect to their 

sensor coverage 
4: Modify the sensor coverage cell 𝑪 to 𝑪𝒔 with respect to 𝚿𝑠 
5: Initialize 𝒋 =  𝟎 
6: Initialize the total number of subregions in 𝚿𝑠 i.e. 𝚫 =  |𝚿𝑠| 
7: while |𝚿𝑠| > 0 
8: Initialize 𝒊 =  𝟏 
9: 𝒋 =  𝒋 +  𝟏 

10: Initialize 𝑸𝟏
𝒋 =  𝑪𝒔{𝟏} 

11: Update 𝑪𝒔 i.e., 𝑪𝒔 =  𝑪𝒔 −  𝑪𝒔{𝟏} 
12: Store 𝒊𝒕𝒉 subregion from set 𝚿𝑠 to group 𝑮𝒔

𝒋  i.e. 𝑮𝒔
𝒋 (𝒊)  =  𝚿𝑠(𝒊) 

13: for 𝒌 = 𝟐 to 𝚫 
14: Initialize 𝑸𝒌

𝒋 =  𝑪𝒔{𝒌} 
15: 𝒔𝒆𝒏𝒔𝒐𝒓𝒔 =  𝑸𝒌

𝒋  ⋂ 𝑸𝟏
𝒋  

16: if |𝒔𝒆𝒏𝒔𝒐𝒓𝒔| >  0 
17: 𝒊 =  𝒊 +  𝟏 
18: 𝑮𝒔

𝒋 (𝒊)  =  𝚿𝑠(𝒊) 
19: Update 𝑪𝒔 i.e., 𝑪𝒔 =  𝑪𝒔 −  𝑪𝒔{𝒌} 
20: end if 
21: end for 
22: Update 𝚿𝑠 i.e., 𝚿𝑠 =  𝚿𝑠 −  𝑮𝒔

𝒋  
23: Update 𝚫 =  |𝚿𝑠| 
24: end while 

4.5 Proposed Random Scheduling Algorithm based on Subregion Coverage 
Random Scheduling Algorithm based on Subregion Coverage (RSASC) schedules those 

sensors which cover subregions of every group step by step. For every subregion in each group, 
a set of sensors that cover a particular subregion is selected to schedule in two steps. In the first 
step, all those sensors which are already scheduled, are eliminated from a set of unscheduled 
sensors. Similarly, assigned schedule numbers are also eliminated from a set of unassigned 
schedule numbers. In the second step, a randomly selected sensor from a set of unscheduled 
sensors is scheduled by randomly assigning a schedule number from a set of unassigned 
schedule numbers. These two steps are repeated for every set of sensors covering a subregion 
in each group. 

Suppose 𝑼 =  {𝟏,𝟐, . . . ,𝜶}  shows a set of schedule numbers and a set of sensors 
𝑸𝒊  = {𝑺𝟏,𝑺𝟐, . . ., 𝑺𝒒}  ⊆  𝑺  covers a subregion 𝜷𝒊  in subregion group 𝑮𝒔

𝒋 . Note that the 
number of sensors covering a subregion will always be greater than or equal to the number of 
schedules i.e., 𝒒 ≥  𝜶,∀𝒋 ∈ 𝑷. From Eq.  8, let 𝑿 = {𝒙𝟏,𝒙𝟐, . . . ,𝒙𝑵} be the solution where 
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each element 𝒙𝒊 indicates an 𝒊𝒕𝒉 sensor in set 𝑺 and its value indicates a particular schedule 
number, i.e. 𝒙𝒊  ∈ 𝑼. 

For each subregion in every group, RSASC first sort out the set of already scheduled 
sensors and their assigned schedule numbers. Suppose 𝑬 ∈ 𝑸𝒊 and 𝑽 ∈ 𝑼 denote a set of 
already scheduled sensors and their assigned schedule numbers, respectively. Similarly, a set 
of unscheduled sensors, 𝑯 ∈ 𝑸𝒊  and unassigned schedule numbers 𝒁 ∈ 𝑼  can be easily 
determined by applying the set difference operation using Eq. 10 and 11, respectively.  

𝑯 =  𝑸𝒊 − 𝑬 (10) 
𝒁 = 𝑼− 𝑽 (11) 

 

Algorithm 2. Random Scheduling Algorithm based on Subregion Coverage (RSASC) 
1: Find the upper limit (𝜶)  
2: Distribute 𝚫 subregions into P groups using Algorithm 1. 
3: Generate a set 𝑼 for 𝜶 unique schedule numbers selected randomly from 1 to 𝜶 

inclusive using 𝒓𝒂𝒏𝒅𝒑𝒆𝒓𝒎(𝜶,𝜶) 
4: Initialize the candidate solution X = zeros(1,N) 
5: Initialize 𝒓 = 𝟎, 𝒚 = 𝟏 and 𝒓𝒆𝒑𝒆𝒂𝒕 = 𝟏𝟎𝟎𝟎 for RSASC repetitions 
6: while 𝒚 > 0 and 𝒓 < 𝑟𝑒𝑝𝑒𝑎𝑡 
7: for each subregion group 𝒋 = 𝟏 to P 
8: for each 𝒊 subregion  in group 𝒋 
9:                 Initialize a set 𝑸𝒊 for sensors that cover 𝜷𝒊 subregion in group 𝑮𝒔

𝒋  group 
10:                 Initialize the set 𝑬 to store already scheduled sensors 
11:                 Initialize the set 𝑽 to store assigned schedule numbers for set 𝑬  
12:                 for each 𝒌 sensor in set 𝑸𝒊 
13:                     if 𝒌 is already scheduled i.e. 𝑿(𝒌) >  0 
14:                         Store 𝒌 in 𝑬 and schedule 𝑿(𝒌) in set 𝑽 
15:                     end if 
16:                 end for 
17:                 Initialize the set 𝑯 to store unscheduled sensors using Eq. 11  
18:                 Initialize the set 𝒁 to store unassigned schedule numbers using Eq. 12   
19:                 if |𝑯| ≥ |𝒁| 
20: for each schedule number 𝒛 ∈  𝒁 
21:                         Assign 𝒛 to a unique sensor 𝒉 ∈  𝑯 i.e., 𝑿(𝒉) = 𝒛 
22:                     end for             
23:                 else  
24:                     Set the condition 𝒚 = 𝟏 for repeating RSASC 
25:                 end if 
26:             end for 
27:      end for 
28: Increment the repetition number for RSASC i.e., 𝒓 = 𝒓 + 𝟏 
29: end while 
30: Evaluate the fitness function 

 

Then, RSASC randomly selects a distinct schedule number one by one from set 𝒁 and 
assigns to one of the randomly selected distinct sensor from set 𝑯. This process is repeated for 
all |𝒁| schedules. In most situations, the number of unscheduled sensors is greater than or 
equal to the number of unassigned schedule numbers i.e.,   |𝑯|  ≥  |𝒁| because the number of 
sensors covering an 𝒊𝒕𝒉  subregion is always greater than or equal to the value of 𝜶 i.e., 
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|𝑸𝒊|  ≥  𝜶. However if |𝑯|  <  |𝑍|, RSASC repeats its process from the beginning. Algorithm 
2 provides the complete pseudo-code for proposed RSASC. 

In example depicted in Fig. 2, set 𝑼 =  {𝟏,𝟐} indicates the set of schedule numbers with 
𝜶 = 𝟐  and 𝑿 = {𝒙𝟏,𝒙𝟐, . . . ,𝒙𝟏𝟎}  indicates the candidate solution with 𝑵 = 𝟏𝟎  sensors. 
Similarly, the proposed RSASC distributes the set 𝚿 = {𝜷𝟏,𝜷𝟐, . . . ,𝜷𝟐𝟎} into four subregion 
groups as tabulated in Table 1. After formation of subregion groups, the proposed sensor 
scheduling using RSASC is 𝒙𝟏 = 𝑺𝟏 = 𝟏 , 𝒙𝟐 = 𝑺𝟐 = 𝟐 , 𝒙𝟑 = 𝑺𝟑 = 𝟐 , 𝒙𝟒 = 𝑺𝟒 = 𝟏 , 
𝒙𝟓 = 𝑺𝟓 = 𝟏, 𝒙𝟔 = 𝑺𝟔 = 𝟐, 𝒙𝟕 = 𝑺𝟕 = 𝟏, 𝒙𝟖 = 𝑺𝟖 = 𝟐, 𝒙𝟗 = 𝑺𝟗 = 𝟏, and 𝒙𝟏𝟎 = 𝑺𝟏𝟎 = 𝟐. 
Similarly, the proposed RSASC creates two MESS as 𝑫𝟏 = {𝑺𝟏,𝑺𝟒,𝑺𝟓,𝑺𝟕,𝑺𝟗} and 𝑫𝟏 =
{𝑺𝟐,𝑺𝟑,𝑺𝟔,𝑺𝟖,𝑺𝟏𝟎}. 

4.6 Computational Cost 
We evaluate the computational complexity of RSASC, HSAML[32], STHGA[31], and 

GAMDSC[30] in terms of how many times each algorithm performs the sensor scheduling 
operations and how many times an algorithm evaluates the fitness function to find the optimal 
solution. RSASC distributes 𝑲 targets or ∆ subregions into 𝑷 groups and then it selects each 
subregion to schedule at most 𝜶 sensors, which cover that subregion. In other words, we can 
say that RSASC schedules at most 𝜶 sensors for each subregion. Since the proposed RSACS 
is a repetitive algorithm. Thus, we calculate the computational complexity of RSASC in terms 
of the number of scheduled sensors as 𝑶(𝒓 ×  𝜶 ×  𝑲),  and 𝑶(𝒓 ×  𝜶 ×  ∆)  for the 
target-coverage and area-coverage applications, respectively, where r shows the number of 
repetitions. After scheduling the sensors covering the subregions, RSASC evaluates the 
candidate solution only once. This one-time fitness evaluation greatly reduces the 
computational time of RSASC. 
 Different from work [32], a harmony consists of 𝑵 sensors for the execution of HSAML 
instead of  𝒏𝟏 ordinary and 𝒎𝟏 energy-harvesting sensors. Moreover, it is fair to ignore local 
search operation in HSAML, since it tries to ensure the presence of energy harvesting sensors 
in an active MESS. Therefore, HSAML schedules 𝑵 sensors for each harmony. Similarly, 
HSAML divides the initial population into 𝝁  subpopulations. For each subpopulation, 
HSAML performs fitness evaluation twice after performing uniform crossover if the 
probability is less than the pre-defined number i.e., harmony memory consideration rate 
(HMCR), otherwise, it evaluates a new randomly generated harmony. For every 𝒈 generation, 
the above process is repeated for all 𝝁 sub-populations. Therefore, we use 𝒈𝝁{𝟐𝑯𝑴𝑪𝑹+
(𝟏 −𝑯𝑴𝑪𝑹)} ≅ 𝟏𝟓.𝟔𝒈 to calculate the fitness evaluations where HMCR=0.95 and 𝝁 = 𝟖. 

STHGA [31] schedules 𝑵 sensors in every chromosome of recombination and selection 
operation. 𝑲𝟐 Redundant sensors are scheduled in its MST operation, 𝑲𝟏 in FST operation 
and one sensor in CST operation for each chromosome. We ignore the sensors scheduled in 
mutation operation. Therefore, we find the computational complexity of STHGA in terms of 
the number of scheduled sensors as follows; it schedules 𝑵  sensors for each of the 𝒎 
chromosome in recombination and selection operation and (𝑲𝟏  + 𝑲𝟐  +   𝟏) sensors in its 
three schedule transformation operations in the worst-case scenario. Thus, on the average, 
STHGA schedules (𝐦𝐍 + 𝐦 (𝑲𝟏 + 𝑲𝟐  +  𝟏))

(𝟐𝐦 + 𝐦(𝑲𝟏 + 𝑲𝟐 +  𝟏))
≅ (N + 11)

𝟏𝟑
 } sensors for each chromosome, if 

𝑲𝟏  =  𝑲𝟐  =  𝟓 and 𝒎 = 𝟑 as defined in STHGA [31]. Authors of STHGA calculates the 
number of fitness function evaluations using 𝒎(𝟏 + (𝟐𝒈 +  ⌊𝒈 𝑮𝒎⁄  ⌋)), where 𝒎 is the 
population size. However, they did not consider the number of fitness evaluations performed 
for finding the redundant sensors in their three operations of schedule transformation. STHGA 
evaluates the fitness function for 𝑲𝟐 times in MST operation, 𝑲𝟏 times in FST and one time in 
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its CST operation for searching redundant sensors. Thus, STHGA actually evaluates the 
fitness function total (𝑲𝟏  + 𝑲𝟐  +   𝟏) times in three schedule transformations for each of 
the 𝒎  chromosome. After these three operations, it evaluates 𝒎  chromosomes in the 
population once again. Therefore, we use 𝒎(𝟏 + (𝟐𝒈 + 𝒈(𝑲𝟏  + 𝑲𝟐  +   𝟏)  +  ⌊𝒈 𝑮𝒎⁄  ⌋)) 
to calculate the fitness evaluations after 𝒈 generations, where 𝑲𝟏  =  𝑲𝟐  =  𝟓, 𝒎 = 𝟑 and 
𝑮𝒎=100. 

GAMDSC [30] schedules 𝑵 sensors in every chromosome to generate new population 
and 𝜶 sensors in its scattering operation. Therefore, it schedules (𝑵 + 𝜶) sensors for each 
chromosome. Similarly, GAMDSC calculates the fitness evaluations after 𝒈 generations as 
(𝑴 + 𝒈𝑴), where 𝑴 is the population size. In summary, the computational complexity of 
RSASC is much lesser as compared to the complexities of HSAML, STHGA, and GAMDSC 
in terms of the number of scheduled sensors and fitness evaluations. 

5. Simulation Results and Analysis 
We assume a 𝟓𝟎𝟎 ×  𝟓𝟎𝟎  square area for random deployment of all sensors for both 

target-coverage and area-coverage application. We calculate the grid size ( 𝒅)  using 
𝑳 ⌊𝑳 (𝑹 𝟖⁄ )⁄ ⌋⁄  to find the coverage of each subregion [31]. For each case of sensor deployment, 
we assume that the energy of each sensor is same i.e., lifetime. We simulate the RSASC, 
HSAML [32], STHGA [31], and GAMDSC [30] to analyze the obtained results of each 
algorithm. We use MATLAB 2011b as a simulation tool to perform each experiment. The 
maximum fitness evaluation limit for HSAML, STHGA, and GAMDSC is 20100. However, if 
an algorithm searches the optimal solution (𝜶), it also stops. Parameter settings for HSAML, 
STHGA, and GAMDSC are mentioned in [32], [31], and [30], respectively. 

We evaluate the performance of each algorithm in terms of Avg. no. of MESS (𝜶𝒂), Avg. 
no. of utilized sensors (𝑵𝒖), Success rate (ℵ), Avg. no. of fitness function evaluations (𝑬𝒂), 
Avg. no. of scheduled sensors (𝑵𝒔𝒔), and Avg. running time in milliseconds (𝑻𝒂). We obtain 
these parameter values from the 100 independent executions of each algorithm. Success rate 
(ℵ) of RSASC and STHGA is 100% i.e. both algorithms find the optimal solution in each of 
the 100 independent execution for each case whereas, for HSAML and GAMDSC, it is 
different. Similarly, the avg. no. of utilized sensors (𝑵𝒖) are different for RSASC and STHGA 
whereas, HSAML and GAMDSC utilize all deployed sensors in their obtained MESSs. 

5.1 Comparison for Target-Coverage Application  
In this section, we evaluate the effectiveness of our proposed algorithm with the HSAML, 

STHGA, and GAMDSC for nine target coverage cases. Six sub-figures in Fig. 5 depict the 
comparison of obtained results in terms of  𝜶𝒂, 𝑵𝒖, ℵ, 𝑬𝒂, 𝑵𝒔𝒔, and  𝑻𝒂 respectively. It can be 
seen from the Fig. 5 that RSASC algorithm outperforms the existing STHGA, HSAML, and 
GAMDSC algorithms in terms of 𝑵𝒖,  𝑬𝒂,  𝑵𝒔𝒔 and  𝑻𝒂 while achieving the optimality (i.e., 𝜶) 
in all cases. Take test case #.7 as an example, in which 𝑵 = 𝟑𝟎𝟎 sensors with sensing range 
𝑹 = 𝟏𝟓𝟎 and K=60 target points are randomly deployed which provides an upper bound 
𝜶 = 𝟐𝟏 for the maximum number of MESS. RSASC searches the required 21 MESS in avg. 
computational time of 𝟏𝟎𝟐.𝟔𝟗𝟕 = 𝟒𝟗𝟖 ms while scheduling the 174 out 300 sensors whereas 
STHGA finds the same number of MESS in avg. running time of 𝟏𝟎𝟑.𝟗𝟕 = 𝟗𝟑𝟑𝟑 ms with 300 
utilized sensors. Whereas, HSAML and GAMDSC take the avg. running time of (𝟏𝟎𝟒.𝟒𝟒𝟒 =
𝟐𝟕𝟕𝟖𝟗  ms and 𝟏𝟎𝟒.𝟔𝟗𝟔 = 𝟒𝟗𝟔𝟑𝟎  ms, respectively) to find the near optimal solution 
(𝜶𝒂 = 𝟏𝟖.𝟗 and 𝜶𝒂 = 𝟐𝟎.𝟗, respectively) while utilizing all 300 sensors. 
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Fig. 5. Results obtained from RSASC, HSAML, STHGA, and GAMDSC for nine target-coverage cases. 
The x-axis is same for each sub-figure. The data in the square brackets on the x-axis of sub-figure (e) 

and (f), respectively, represents the value for 𝑵, 𝑹, 𝑲, and 𝑷, e.g., in 8th case [𝐍,𝐑,𝐊,𝐏] =
[400,90,80,10]. Whereas, 𝑵 is the number of deployed sensors, 𝑹 shows the sensing range, 𝑲 

indicates the number of targets, and 𝑷 is the number of target groups created using proposed RSASC.  
(a) Avg. no. of MESS (𝜶𝒂). (b) Avg. no. of utilized sensors (𝑵𝒖). (c) Success rate (ℵ).  

(d) Avg. no. of fitness evaluations (𝑬𝒂). (e) Avg. no. of scheduled sensors on log-scale (𝑵𝒔𝒔).  
(f) Avg. running time (milliseconds) on log-scale (𝑻𝒂). 
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The reason why RSASC takes less running time as compared to STHGA, HSAML, and 
GAMDSC is that it randomly schedules the 𝜶 sensors covering each target points and it is the 
single solution based algorithm, which evaluates the fitness function only for once. Whereas, 
STHGA, HSAML, and GAMDSC are population-based random search algorithms, which 
evaluate the fitness function so many times to search an optimal solution. For the same case 
#.7, RSASC distributes 𝑲 = 𝟔𝟎 target points into 𝑷 = 𝟒 groups. In each group, it selects each 
target point one by one to randomly schedule at most 𝜶 sensors, which cover that particular 
target point. Since there are 60 target points and 𝜶 = 𝟐𝟏. Therefore, our proposed RSASC 
schedules total 1260 sensors in its operation. After sensor scheduling operation, RSASC 
evaluates the candidate solution only once. STHGA finds the optimal solution in 2307 fitness 
evaluations. As we have already discussed in Section 4.6 that STHGA approximately 
schedules (𝐍 + 𝟏𝟏) 𝟏𝟑⁄  sensors in each chromosome. Therefore, STHGA schedules 
approximately 55191 sensors since 𝑵 = 𝟑𝟎𝟎 for test case #.7. The increase in the number of 
scheduled sensors (55191 > 1260) as well as fitness function evaluations (2307>1) increases 
the computational time of STHGA as compared to our proposed scheme. For the same test 
case, HSAML searches approximately 19 MESS in 20100 fitness evaluations while 
scheduling total 𝟒𝟓𝟗𝟑𝟗𝟎𝟎 ≅ 𝟒.𝟓  million sensors at the rate of 𝑵 = 𝟑𝟎𝟎  sensors per 
harmony. Similarly, GAMDSC also finds the near-optimal solution (𝜶𝒂 = 𝟐𝟎.𝟗) in 20100 
fitness evaluation with total 𝟔𝟒𝟓𝟐𝟏𝟎𝟎 ≅ 𝟔.𝟒𝟓 million sensors at the rate of (𝑁 + 𝛼) = 171 
sensors per chromosome. In summary, RSASC gives high-quality results in shorter running 
time as compared to the existing STHGA, HSAML and GAMDSC for the target-coverage 
application.  

5.2 Comparative Analysis for Area-Coverage Application  
This section analyzes the performance of each algorithm for 10 area-coverage cases in 

terms of  𝜶𝒂, 𝑵𝒖, ℵ, 𝑬𝒂, 𝑵𝒔𝒔, and  𝑻𝒂, respectively, as depicted in six sub-figures of Fig. 6.  
Area-coverage is a bigger scenario as compared to the target-coverage in which subregions 
(∆) can be treated as targets (𝑲). The results in Fig. 6 show that RSASC outperforms the 
existing STHGA, HSAML, and GAMDSC in terms of 𝑵𝒖,  𝑬𝒂,  𝑵𝒔𝒔 and  𝑻𝒂 while searching 
the optimum number of MESS (𝜶) in all cases. However, the performance of STHGA is far 
better than the HSAML and GAMDSC in all test cases except cases #. 5, and 10, where both 
give the better result than STHGA due to the smaller value of 𝜶. For example, in case #. 9 as 
given in Fig. 6, 𝑵 = 𝟗𝟎𝟎 sensors with sensing range R=90 are randomly deployed to monitor 
whole target region. These 900 sensors distribute the target region into ∆= 𝟐𝟎𝟐𝟒 subregions 
and provide an upper bound of 𝜶 = 𝟏𝟐. For the same test case, the computational time taken 
by RSASC is 𝟏𝟎𝟑.𝟑𝟕 = 𝟐𝟑𝟒𝟓  ms with 391 utilized sensors. Whereas STHGA takes 
𝟏𝟎𝟒.𝟗𝟓𝟏 = 𝟖𝟗𝟐𝟔𝟕 ms with 415 utilized sensors to search an optimal solution of 𝜶 = 𝟏𝟐. In 
contrast to RSASC and STHGA, HSAML and GAMDSC find the near-optimal solution in 
𝟏𝟎𝟓.𝟐𝟔𝟓 = 𝟏𝟖𝟑  seconds and 𝟏𝟎𝟓.𝟎𝟏𝟑 = 𝟏𝟎𝟑  seconds, respectively, with all 900 utilized 
sensors.    

In comparison with the three algorithms, our proposed RSASC is a non-iterative algorithm, 
which evaluates the fitness function only once. Moreover, the formation of subregion groups 
helps the RSASC to perform fewer sensor scheduling operations. This one-time fitness 
function evaluation and fewer number of sensor scheduling operations extraordinarily reduce 
its computational time. For the same case #.9, RSASC distributes the ∆= 𝟐𝟎𝟐𝟒 subregions 
into 𝑷 =  𝟏𝟑 groups. Each subregion from every group is selected one by one to schedule the 
𝜶 sensors from their sensor coverage. Thus, RSASC performs total 𝟐𝟎𝟐𝟒 ×  𝟏𝟐 = 𝟐𝟒𝟐𝟖𝟖 
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operations to search an optimal solution of 𝜶 = 𝟏𝟐. STHGA schedules total ≅  𝟒𝟏𝟔𝟎𝟒𝟔 
sensors in 5937 evaluations at the rate of  70 sensors in each evaluation. HSAML is able to find 
𝜶𝒂 = 𝟏𝟎.𝟗  after scheduling 18900000 (≅  𝟏𝟖.𝟗  million) sensors. Similarly, GAMDSC 
evaluates the fitness function 20100 times to obtain the near-optimal solution (𝜶𝒂 = 𝟏𝟏.𝟗) 
while scheduling 20341200 (≅  𝟐𝟎 million) sensors with an average of 1012 sensors per 
chromosome. 

 

 
Fig. 6. Results obtained from RSASC, HSAML, STHGA, and GAMDSC for 10 area coverage cases. 
The x-axis is same for all six sub-figures. The data in the square brackets on the x-axis of (e) and (f), 

respectively, represents the value for 𝑵, 𝑹, ∆, and 𝑷, e.g., in 5th case [𝐍,𝐑,∆,𝐏] = [500,80,2402,17]. 
Whereas, 𝑵 is the number of deployed sensors, 𝑹 shows the sensing range, ∆ indicates the number of 
created subregions, and 𝑷 is the number of target groups created using proposed RSASC. (a) Avg. no. 

of MESS (𝜶𝒂). (b) Avg. no. of utilized sensors (𝑵𝒖). (c) Success rate (ℵ). (d) Avg. no. of fitness 
evaluations (𝑬𝒂). (e) Avg. no. of scheduled sensors on log-scale (𝑵𝒔𝒔). (f) Avg. running time 

(milliseconds) on log-scale (𝑻𝒂). 
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As we have already discussed in Section 5.1 that formation of subregion groups helps the 
RSASC to search the optimal solution with higher optimization speed. Therefore, for the same 
case #.9, we analyze the significance of the formation of subregion groups how effectively it 
guides the RSASC to quickly achieve the maximum number of MESS. Fig. 7 depicts the 
simultaneous growth in fitness values of all 𝜶 = 𝟏𝟐 MESSs after the coverage of each 
subregion group using the proposed RSASC. The number of subregions in each group is also 
listed on the right side of the figure. In 1st subregion group 𝑮𝒔𝟏 , total 144 out of 2024 
subregions are grouped. Similarly, 2nd and 3rd group consist of 161 and 169 subregions, 
respectively, and so on. After the formation of subregion groups, RSASC selects 1st subregion 
from 𝑮𝒔𝟏 and randomly schedules at most 𝜶 = 𝟏𝟐 sensors one by one which covers the 1st 
subregion. For the 2nd subregion in 𝑮𝒔𝟏, it first sorts out such sensors from the sensor coverage 
of 2nd subregion which have already scheduled and their assigned schedule numbers. Then, it 
randomly assigns remaining schedule numbers in succession to one of the remaining sensors 
to ensure the coverage of 2nd subregion for each MESS. This process is repeated for all 144 
subregions in 𝑮𝒔𝟏. Similary, the above process is repeated for all 𝑷 =  𝟏𝟑 subregion groups.  

 

 
Fig. 7. Simultaneous growth in fitness value of each MESS after the coverage of each subregion group 
using the proposed RSASC for the 9th test case shown in Fig. 7 in which 𝑵 = 𝟗𝟎𝟎 sensors with sensing 
range 𝑹 = 𝟗𝟎 divides the target region into ∆= 𝟐𝟎𝟐𝟒 subregions. The proposed RSASC distributes the 

∆= 𝟐𝟎𝟐𝟒 subregions into 𝑷 =  𝟏𝟑 groups. The right side of the figure also lists the number of 
subregions in each group. 

It can be seen from the Fig. 7 that how fitness value of each MESS grows simultaneously 
after the coverage of each subregion group. The fitness of each MESS gets improved 
continuously when the coverage of subregion groups from 𝑮𝒔𝟏  to 𝑮𝒔𝟕  is fulfilled by using 
RSASC. After ensuring the coverage of subregion group 𝑮𝒔𝟖, first MESS (D12) is constituted 
which completely covers the target area. Whereas, at the same time, the fitness of other 
MESSs reaches to more than 90%. Another MESS (D9) achieves its 100% fitness value after 
the coverage of 𝑮𝒔𝟗 while other MESSs improve their fitness. Three new schedule numbers D1, 
D3, and D10 achieve their 100% fitness after the coverage of 𝑮𝒔𝟏𝟎 to 𝑮𝒔𝟏𝟏. All remaining seven 
MESSs achieve their 100% fitness when RSASC covers the group 𝑮𝒔𝟏𝟐 and 𝑮𝒔𝟏𝟑. 
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5.3 Effect of Redundant Sensors on Optimization Difficulty of RSASC  
In addition to the number of sensors N, their positions and sensing ranges, redundant 

sensors (𝑵𝑹) also play a vital role to calculate the optimization difficulty of an algorithm for 
this set K-cover problem. Since both, RSCAC and STHGA, find the optimal solution with 100% 
success rate. Therefore, in this subsection, we only analyze the optimization difficulty of 
RSCAC and STHGA by reducing the number of redundant sensors for the test case #.10 in  
Fig. 6. Initially, 𝑵 = 𝟏𝟎𝟎𝟎  deployed sensors divide the target region into ∆= 𝟔𝟎𝟑𝟏 
subregion with an upper bound of 𝜶 = 𝟑. We remove all the redundant sensors step by step 
and record the results of both algorithms. Table 2 tabulates the seven cases of removed 
redundant sensors (𝑵𝑹), remaining deployed sensors 𝑵, the updated number of subregions ∆ 
and the results obtained from both algorithms. We limit the number of repetitions for RSASC 
to 1000. Similarly, for STHGA, the maximum number of fitness evaluations is set to 20100. 

 
Table 2. Results for the optimization difficulty of RSASC and STHGA considering seven different 

scenarios of redundancy for area-coverage case #. 10 in Fig. 6. 
Cases RSASC (𝒓𝒆𝒑𝒆𝒂𝒕 = 𝟏𝟎𝟎𝟎) STHGA with 𝒎 = 𝟑 

#. 𝑵𝑹 𝑵 ∆ 𝑵𝒖 𝜶𝒂 𝑻𝒂(𝒔) 𝑵𝒖 𝜶𝒂 𝑬𝒂 𝑻𝒂(𝒔) 
1 100 900 5947 611 3 2.783 763 3 5235 297 
2 200 800 5772 514 3 2.176 578 3 13704 517 
3 300 700 5449 414 3 2.753 534 3 14796 356 
4 400 600 5236 324 3 2.472 595 2.96 20100 427 
5 500 500 4650 225 3 2.201 500 1.99 20100 391 
6 600 400 3985 129 3 2.189 400 1.99 20100 244 
7 761 239 2265 0 0 1278 239 1.96 20100 182 

 
It can be seen from the Table 2 that RSASC finds the optimal solution in six out of seven 

cases, whereas STHGA is only able to find the optimal solution in three out of seven test cases 
in the specified limit of fitness evaluations. STHGA performs well as compared to proposed 
RSASC for an only 7th case where all redundant sensors are removed. Notice that the situation 
of sensor deployment like case #.7 is rare since a large number of sensors are deployed in 
random deployment to achieve the coverage of target region. The reason why proposed 
RSASC gives 𝜶 = 𝟎 after 1000 repetitions is that there might be a condition in which the 
number of unassigned schedules (𝒁) is greater than the number of unscheduled sensors (𝑯). In 
such situations, it repeats the whole process. However, in contrast with the RSASC, STHGA 
finds the solution of 𝜶 = 𝟏.𝟗𝟔𝟏 in 20100 fitness evaluations in 182 seconds. Failure of 
STHGA to find the optimal solution is obvious, since it relies on redundant sensors to 
transform their schedules in its three transition operations. In summary, results show that 
proposed RSASC outperforms the STHGA. 

6. Conclusion 
In this paper, we propose a novel Random Scheduling Algorithm based on the Subregion 

Coverage (RSASC) to solve famous SET K-cover problem to maximize the network lifetime 
under target-coverage and area-coverage constraint. Firstly, the proposed RSASC distributes 
the ∆  subregions into 𝑷  disjoint groups according to their similar sensing coverage as 
discussed in Subsection 4.1. Then for each group, RSASC selects a subregion one by one and 
schedules at most ∆ sensors, which cover that subregion. Simulation results show that RSASC 
outperforms the existing algorithms in terms of greater computational speed (saves on average 
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more than the 93% of the time) as well as the number of utilized sensors while achieving the 
optimal solution. We will extend this research for lifetime maximization of dynamic WSN. 
Since, our proposed RSASC achieves the maximum number of MESS with greater 
computational speed.  
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