• Title/Summary/Keyword: tantalate

Search Result 23, Processing Time 0.023 seconds

A Study on the CMP of Lithium Tantalate Wafer (Lithium Tantalate (LiTaO3) 웨이퍼의 CMP에 관한 연구)

  • Lee, Hyun-Seop;Park, Boum-Young;Seo, Heon-Deok;Chang, One-Moon;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1276-1281
    • /
    • 2005
  • Compound semiconductors are the semiconductors composed of more than two chemical elements. Lithium Tantalate$K_I$ wafer is used for several optical devices, especially surface acoustic wave(SAW) device. Because of the lithography in SAW device process, $LiTaO_3$ polishing is needed. In this paper, the commercial slurries $(NALC02371^{TM},\; ILD1300^{TM},\;ceria slurry)$ used for chemical mechanical polishing(CMP) were tested, and the most suitable slurry was selected by measuring material removal rate and average centerline roughness$(R_a)$. From these result, it was proven that $ILD1300^{TM}$ was the most suitable slurry for $LiTaO_3$ wafer CMP due to the chemical reaction between solution in slurry and material.

Periodically poled stoichiometric lithium tantalate for optical parametric oscillation (주기적으로 분극반전된 stoichiometric $LiTaO_3$ 이용한 광매게발생)

  • Lee, Yu-Nan;Sunao Kurimuyn;Masaru Nakamura;Kenii Kitamura
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.228-229
    • /
    • 2003
  • The quasi-phase matching (QPM) technique has dramatically changed the guidelines in developing nonlinear optical materials, which doesn't require birefringence and off-diagonal components for efficient wavelength conversion. Minimum requirement for QPM is the modulation of nonlinearity and ferroelectric materials with low coercive field has become fascinating in periodical poling. Stoichiometric lithium tantalate (SLT) has attractive advantages of low coercive field (∼l .5 KV/mm), high nonlinearity, high optical damage resistance and low thermo-optic coefficients, leading to a large aperture QPM devices for high power operation. (omitted)

  • PDF

Efficient Single-Pass Optical Parametric Generation and Amplification using a Periodically Poled Stoichiometric Lithium Tantalate

  • Yu, Nan-Ei;Lee, Yong-Hoon;Lee, Yeung-Lak;Jung, Chang-Soo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.192-195
    • /
    • 2007
  • A high-conversion efficiency, nanosecond pulsed optical parametric generation and amplification with repetition rate of 20 kHz based on a periodically poled MgO-doped stoichiometric lithium tantalate was presented. Pumped by a Q-switched $Nd:YVO_4$ laser at 1064 nm with a pumping power of 4.8W, the generated output power was 1.6W for the signal and idler waves, achieving a slope efficiency of 50%. Using a seed source at signal wave the amplified signal output-pulse energy reached $65{\mu}J$. The obtained maximum gain was 72.4 dB.

Photocatalytic Performance of Barium-doped Strontium Tantalate

  • Kozu, Asuka;Fujimori, Hirotaka;Kim, Ki-Young;Oshiro, Kazunori;Yamamoto, Setsuo;Sakata, Yoshihisa;Imamura, Hayao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.926-927
    • /
    • 2006
  • [ $Sr_2Ta_2O_7$ ], a layered perovskite compound, has been reported to possess most excellent photocatalytic properties among the layered perovskite materials. Recently, we have demonstrated that $Ba_5Ta_4O_{15}$ that was prepared under a mol ratio of Ba: Ta=1:1 has high photocatalytic performance as well as $Sr_2Ta_2O_7$. In this study, the photocatalyst samples with a mol ratio of Sr: Ba: Ta = (1-x): x: 1 were prepared. The maximum photocatalytic performance was obtained for x= 0.2, which is three times as high as that of undoped $Sr_2Ta_2O_7$.

  • PDF

A Study of the Dielectric Properties of the Silver-Tantalate-Niobate Thick Films (Silver-Tantalate-Niobate Thick Film의 유전 특성 연구)

  • Lee, Ku-Tak;Yun, Seok-Woo;Kang, Ey-Goo;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.521-524
    • /
    • 2010
  • Low loss perovskite niobates and tantalates have been placed on a short list of functional materials for future technologies. In this study, we fabricated Ag(Ta,Nb)$O_3$ thick films on the $Al_2O_3$ substrates by the screen printing method. The Ag(Ta,Nb)$O_3$ powders were fabricated by the mixed oxide method. The sintering temperature and time were $1150^{\circ}C$ and 2 hrs, respectively. The results of XRD analysis showed that the specimens employed in this study had the pesudo cubic structure. The dielectric permittivity and loss tangent of the films have been characterized from 1 kHz to 1 MHz. Also the dielectric permittivity and loss tangent were measured from 303 K to 393 K. The electrical properties of the film are also discussed.