• Title/Summary/Keyword: tangent curves

검색결과 55건 처리시간 0.111초

벡터를 활용한 이차곡선과 사이클로이드의 접선에 대한 연구 (A study on tangent of quadratic curves and cycloid curves using vectors)

  • 이동원;정영우;김부윤
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권3호
    • /
    • pp.313-327
    • /
    • 2014
  • 'Tangent' is one of the most important concepts in the middle and high school mathematics, especially in dealing with calculus. The concept of tangent in the current textbook consists of the ways which make use of discriminant or differentiation. These ways, however, do not present dynamic view points, that is, the concept of variation. In this paper, after applying 'Roberval's way of finding tangent using vectors in terms of kinematics to parabola, ellipse, circle, hyperbola, cycloid, hypocycloid and epicycloid, we will identify that this is the tangent of those curves. This trial is the educational link of mathematics and physics, and it will also suggest the appropriate example of applying vector. We will also help students to understand the tangent by connecting this method to the existing ones.

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.

3차원 벡터필드 탄젠트 곡선 계산을 위한 사면체 분해 방법 (A Tetrahedral Decomposition Method for Computing Tangent Curves of 3D Vector Fields)

  • 정일홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.575-581
    • /
    • 2015
  • 본 논문에서는 3차원 벡터필드의 탄젠트 곡선을 계산하는 효율적이고 정확한 방법을 제안한다. 탄젠트 곡선 상의 정확한 값을 구하지 못하고 단지 탄젠트 곡선의 근사치를 구하는 Runge-Kutta 같은 기존의 방법과는 달리 여기서 제안한 방법은 3D 사면체 도메인에서 벡터필드가 선형적으로 변한다는 가정하에 탄젠트 곡선 상의 정확한 값을 계산한다. 새로 제안한 방법은 벡터필드가 3D 사면체 도메인에서 선형적으로 변한다고 가정한다. 우선 이 방법은 3차원 벡터필드에서 육면체 셀을 5 또는 6개의 사면체 셀로 분해하는 것을 요구한다. 임계점은 각 사면체의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 이 방법은 이전 사면체에서 계산된 탄젠트 곡선상의 점들을 기초로 다음 사면체에서 탄젠트 곡선상의 계속적인 점들을 생성함으로써 출구 점을 구한다. 탄젠트 곡선상의 점들은 각 사면체의 명시해에 의해서 계산되었기 때문에 새로운 방법은 3D 벡터필드를 가시화하는데 정확한 위상을 마련한다.

2차원 벡터 필드의 효율적인 가시화 방법 (An Efficient Visualization Method of Two-Dimensional Vector Fields)

  • 정일홍
    • 한국멀티미디어학회논문지
    • /
    • 제12권11호
    • /
    • pp.1623-1628
    • /
    • 2009
  • 본 논문에서는 2차원 벡터 필드의 탄젠트 곡선을 계산하는 효율적이고 정확한 방법을 제안한다. 탄젠트 곡선 상의 정확한 값을 구하지 못하고 단지 탄젠트 곡선의 근사치를 구하는 Runge-Kutta 같은 종래의 방법과는 달리 여기서 제안한 방법은 2D 삼각형에서 벡터 필드가 선형적으로 변한다는 가정 하에 탄젠트 곡선상의 정확한 값을 계산한다. 새로 제안한 방법은 벡터 필드가 2D 삼각형에서 선형적으로 변한다고 가정한다. 우선 이 방법은 2D에서 사각형 셀을 2개의 삼각형 셀로 분해하는 것을 요구한다. 임계점은 각 삼각형의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 이 방법은 이전 삼각형에서 계산된 탄젠트 곡선상의 점들을 기초로 다음 삼각형에서 탄젠트 곡선상의 계속적인 점들을 생성함으로써 출구 점을 구한다. 탄젠트 곡선상의 점들은 각 삼각형의 명시해에 의해서 계산되었기 때문에 새로운 방법은 2D 벡터 필드를 가시화하는데 정확한 위상을 마련한다.

  • PDF

VISUAL CURVATURE FOR SPACE CURVES

  • JEON, MYUNGJIN
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.487-504
    • /
    • 2015
  • For a smooth plane curve, the curvature can be characterized by the rate of change of the angle between the tangent vector and a fixed vector. In this article we prove that the curvature of a space curve can also be given by the rate of change of the locally defined angle between the tangent vector at a point and the nearby point. By using height functions, we introduce turning angle of a space curve and characterize the curvature by the rate of change of the turning angle. The main advantage of the turning angle is that it can be used to characterize the curvature of discrete curves. For this purpose, we introduce a discrete turning angle and a discrete curvature called visual curvature for space curves. We can show that the visual curvature is an approximation of curvature for smooth curves.

Convexity preserving piecewise rational interpolation for planar curves

  • Sarfraz, Muhammad
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 1992
  • This paper uses a piecewise ratonal cubic interpolant to solve the problem of shape preserving interpolation for plane curves; scalar curves are also considered as a special case. The results derived here are actually the extensions of the convexity preserving results of Delbourgo and Gregory [Delbourgo and Gregory'85] who developed a $C^{1}$ shape preserving interpolation scheme for scalar curves using the same piecewise rational function. They derived the ocnstraints, on the shape parameters occuring in the rational function under discussion, to make the interpolant preserve the convex shape of the data. This paper begins with some preliminaries about the rational cubic interpolant. The constraints consistent with convex data, are derived in Sections 3. These constraints are dependent on the tangent vectors. The description of the tangent vectors, which are consistent and dependent on the given data, is made in Section 4. the convexity preserving results are explained with examples in Section 5.

  • PDF

탄젠트를 이용한 biarc로의 곡선 근사화 (Approximation of Curves with Biarcs using Tangent)

  • 방주영;김재정
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.168-174
    • /
    • 2000
  • A biarc is a curve connecting two circular arcs with the constraints of tangent continuity so that it can represent the free form currie approximately connecting several biarcs with the tangent continuity. Since a biarc consists of circular arcs, the offset curve of the curve represented by biarcs can be easily obtained. Besides. if the tool path is represented by biarcs, the efficiency of machining is improved and the amount of data is decreased. When approximating a curve with biarcs, the location of the point where two circular arcs meet each other plays an important part in determining the shape of a biarc. In this thesis, the optimum point where two circular arcs meet is calculated using the tangent information of the curve to approximate so that it takes less calculation time to approximate due to the decrease of the number of iterations.

  • PDF

DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH ALMOST TOTAL FLEXES

  • Kim, Seon Jeong;Komeda, Jiryo
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1159-1186
    • /
    • 2019
  • In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5. We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tangent.

학교 수학에서 접선 개념 교수 방안 연구 (Teaching and Learning Concepts of Tangent in School Mathematics)

  • 임재훈;박교식
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권2호
    • /
    • pp.171-185
    • /
    • 2004
  • 원의 접선에 대한 초기 학습 경험은 접선에 대한 부적절한 직관을 형성하여 이후 학습의 장애가 될 수 있다. 이 논문은 이전 학교급 또는 학년에서의 학습을 통해 형성된 접선 개념을 이후 학교급 또는 학년에서의 학습 과정에서 반성, 수정, 개선하는 학습 경험이 이루어지도록 하는 방안을 모색한 것이다. 이 연구에서 제시한 방향을 따라 원의 접선에서 시작하여, 곡선의 맥락을 확대하면서 기존의 접선 개념을 수정하는 과정을 거치는 동안, 학생들은 초기 학습 단계에서 형성된 '곡선과 한 점에서 만난다.' 또는 '곡선을 스치고 지나간다.'와 같은 관념들이 제한된 맥락에서는 접선의 정의로서 타당하지만, 보다 일반화된 맥락에서는 접선의 본질이 될 수 없음을 알 수 있다. 그리고 할선의 극한이나 중근, 미분계수와 관련된 접선의 정의의 의미를 이해하고 그 장점을 인식할 수 있다.

  • PDF

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • 충청수학회지
    • /
    • 제34권1호
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.