DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH ALMOST TOTAL FLEXES

Seon Jeong Kim and Jiryo Komeda

Abstract

In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5 . We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tangent.

1. Introduction

Let \mathbb{N}_{0} be the additive monoid of non-negative integers. A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if the complement $\mathbb{N}_{0} \backslash H$ is a finite set. The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H, which is denoted by $g(H)$. For a numerical semigroup H we denote by $d_{2}(H)$ the set consisting of the elements h with $2 h \in H$, which is a numerical semigroup.

In this article a curve means a projective 1-dimensional algebraic (not necessarily irreducible) variety over an algebraically closed field k of characteristic 0 . Let C be a smooth irreducible curve of genus g. For a point P of C we define $H(P)$ as the set
$\left\{s \in \mathbb{N}_{0} \mid\right.$ there is a rational function f on C such that $\left.(f)_{\infty}=s P\right\}$, where $(f)_{\infty}$ means the polar divisor of f. Let $g(C)$ be the genus of the curve. Then the set $H(P)$ becomes a numerical semigroup of genus $g(C)$, which is called the Weierstrass semigroup of P. Such a numerical semigroup is said to be Weierstrass. If $\pi: \tilde{C} \longrightarrow C$ is a double covering of a curve with a ramification point \tilde{P} over P, then we have $d_{2}(H(\tilde{P}))=H(P)$. Such a numerical semigroup $H=H(\tilde{P})$ is said to be of double covering type. In this article a double covering $\pi: \tilde{C} \longrightarrow C$ of a curve means that C and \tilde{C} are smooth and irreducible. We

[^0]are interested in the Weierstrass semigroups of ramification points on double covers of smooth plane curves of degree d. Such a numerical semigroup H, i.e., $H=H(\tilde{P})$, is said to be of double covering type of a plane curve of degree d, which is abbreviated to DCP of degree d. We consider the following problem:
DCP Hurwitz Problem. Let d be a positive integer. Then determine all the Weierstrass semigroups which are DCP of degree d.

For the known facts of DCP Hurwitz Problem for $d \leqq 5$, refer to [3]. We treat the case $d=6$ in this article. Let C be a smooth plane curve of degree 6 and P its total flex, i.e., $\operatorname{ord}_{P} C \cdot T_{P}=6$ where T_{P} is the tangent line at P on C and $\operatorname{ord}_{P} C . T_{P}$ is the multiplicity at P of the intersection divisor $C . T_{P}$ of C with T_{P}. Then we have $H(P)=\langle 5,6\rangle$ where $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ is the additive monoid generated by a_{1}, \ldots, a_{s} for positive integers a_{1}, \ldots, a_{s}. When H is a numerical semigroup with $d_{2}(H)=\langle 5,6\rangle$, DCP Hurwitz Problem is solved in [4]. Namely, if $g(H) \geqq 30$ with $d_{2}(H)=\langle 5,6\rangle$, then H is DCP of degree 6. We consider the case where P is an almost total flex on C, i.e., $\operatorname{ord}_{P} C \cdot T_{P}=5$, in this case we have $H(P)=\langle 5,9,13,17,21\rangle$, and vice versa. The following is the main result of this article:
Main Theorem. We determine all the numerical semigroups H with $d_{2}(H)=$ $\langle 5,9,13,17,21\rangle$ which are DCP of degree 6 . The number of the $D C P$ numerical semigroups H is 70, and the number of the non-DCP numerical semigroups H is 20 .

We note that there are many numerical semigroups H which are not DCP even if $d_{2}(H)=\langle 5,9,13,17,21\rangle$. This is different from the result (Main Theorem in [4]) in the case of numerical semigroups H with $d_{2}(H)=\langle 5,6\rangle$. We do not know whether these twenty numerical semigroups are of double covering type or not. More widely we do not know even whether they are Weierstrass or not.

2. Proof of Main Theorem

In this section, let H be a numerical semigroup with $g(H) \geqq 30, d_{2}(H)=J_{6}$ and $n \geqq 25$ where we set $J_{6}=\langle 5,9,13,17,21\rangle$ and $n=\min \{h \in H \mid h$ is odd $\}$. Let $\delta(H)$ be the number of the odd elements of $\mathbb{N}_{0} \backslash H$ which are larger than n and less than $n+34$. We set $r(H)=10-\delta(H)$. Let $t(H)$ be the cardinality of the set

$$
\{u \in M(H) \mid u \text { is an odd integer distinct from } n\}
$$

where $M(H)$ denotes the minimal set of generators for the monoid H. Here we prepare the diagram where we only draw its frame, and later associated to H we fill in the blanks by the symbols \odot, \circ and \times which indicate an integer in $M(H), H \backslash M(H)$ and $\mathbb{N}_{0} \backslash H$, respectively.

Hence, we note that $0 \leqq \delta(H) \leqq 10,0 \leqq r(H) \leqq 10$ and

$$
g(H)=20+\frac{n-1}{2}-r(H)
$$

(for example, see Lemma 3.1 in [1]). For example, we associate the following diagram to the numerical semigroup $H_{0}=2 J_{6}+\langle n, n+4, n+8, n+16\rangle$ where we set $J_{6}=\langle 5,9,13,17,21\rangle$:

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\odot	\times	\odot	\downarrow
(n)	\times	\circ	\odot	\bullet	+10
	\circ	\circ	\bullet	$(\mathrm{n}+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

In this case we have $t\left(H_{0}\right)=3, r\left(H_{0}\right)=7$ and $g\left(H_{0}\right)=20+\frac{n-1}{2}-7$.
The proof of Main Theorem is divided into ninety cases classified by the value of $t(H)$ and the generators which are odd. In this section we take a pointed non-singular plane curve (C, P) of degree 6 with $T_{P} . C=5 P+R$ where R is a point distinct from P. Then we have $H(P)=J_{6}$. In the proof of Main Theorem we use the following lemma and theorem many times which are stated in Lemma 2.1 and Theorem 2.3 in [4] respectively.

Lemma 2.1 ([4]). i) 2 points impose independent condition on the system of lines.
ii) 3 points fail to impose independent condition on the system of of lines if and only if the three points are collinear.
iii) 3 points impose independent condition on the system of conics.
iv) 4 points fail to impose independent condition on the system of conics if and only if the four points are collinear.
v) 5 points fail to impose independent condition on the system of conics if and only if there are four collinear points among them.
vi) 6 points fail to impose independent condition on the system of conics if and only if there are four collinear points among them or the six points are on a conic.
vii) 4 points impose independent condition on the system of cubics.
viii) 5 points fail to impose independent condition on the system of cubics if and only if the five points are collinear.
ix) 6 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them.
x) 7 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them.
xi) 8 points fail to impose independent condition on the system of cubics if and only if there are five collinear points among them or the eight points are on a conic.

Theorem 2.2 ([4]). Let (C, P) be a pointed non-singular plane curve of degree 6 and H a numerical semigroup with $d_{2}(H)=H(P)$ and $g(H) \geqq 30$. Set

$$
n=\min \{h \in H \mid h \text { is odd }\} .
$$

We note that

$$
g(H)=20+\frac{n-1}{2}-r
$$

with some non-negative integer r. Let Q_{1}, \ldots, Q_{r} be points of C different from P with $h^{0}\left(Q_{1}+\cdots+Q_{r}\right)=1$. Moreover, assume that H has an expression

$$
H=2 d_{2}(H)+\left\langle n, n+2 l_{1}, \ldots, n+2 l_{s}\right\rangle
$$

of generators with positive integers l_{1}, \ldots, l_{s} such that for any cubic C_{3} the inequality $C_{3} . C \geqq\left(l_{i}-1\right) P+Q_{1}+\cdots+Q_{r}$ implies that $C_{3} . C \geqq l_{i} P+Q_{1}+$ $\cdots+Q_{r}$, i.e.,

$$
h^{0}\left(K-\left(l_{i}-1\right) P-Q_{1}-\cdots-Q_{r}\right)=h^{0}\left(K-l_{i} P-Q_{1}-\cdots-Q_{r}\right)
$$

where K is a canonical divisor on C. Then the complete linear system $\mid n P-$ $2 Q_{1}-\cdots-2 Q_{r} \mid$ is base point free and there is a double covering $\pi: \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} over P satisfying $H(\tilde{P})=H$, i.e., H is DCP of degree 6.

We begin the proof of Main Theorem case by case.
(I) The case $t(H)=0$. Then $H=2 J_{6}+\langle n\rangle$, which is DCP by Proposition 2.3 in [2].

From now on, we set $E_{r}=Q_{1}+\cdots+Q_{r}$ with $r=r(H)$ where Q_{1}, \ldots, Q_{r} are points of C defined in each item and different from P. For simplicity, we use the following notations: For a conic C_{2} and a line L we denote by $C_{2} L$ or $L C_{2}$ the cubic defined by the product of the equations of C_{2} and L. If $L=T_{P}$ where T_{P} denotes the tangent line at P on C for a pointed non-singular plane curve (C, P), then we use the notation $C_{2} T_{P}$ so as not to be confused with the tangent line to C_{2}. For lines L_{1}, L_{2} and L_{3} we also define the cubic $L_{1} L_{2} L_{3}$ and the conic $L_{1} L_{2}$ in a similar way. For a line L we set $L^{2}=L L$ and $L^{3}=L L L$.
(II) The case $t(H)=1$. There are ten kinds of numerical semigroups. We will show that half of the numerical semigroups with $t(H)=1$ are DCP. But we will prove that any of the remaining half is not DCP.

II-1) $H=2 J_{6}+\langle n, n+2\rangle$. Then $r(H)=4$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Then we have $h^{0}\left(K-E_{4}\right)=10-4=6$. Let C_{3} be a cubic with $C_{3} . C \geqq P+E_{4}$. Then we get $C_{3}=L_{1} C_{2}$ with a conic C_{2}, which implies that $h^{0}\left(K-P-E_{4}\right)=6$. Hence, H is DCP.

II-2) $H=2 J_{6}+\langle n, n+4\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\odot	\times	\times	\downarrow
(n)	\times	\circ	\times	\bullet	+10
	\circ	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(\mathrm{n}+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are five points Q_{1}, \ldots, Q_{5} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-P-E_{5}\right)=h^{0}\left(K-2 P-E_{5}\right)=4, h^{0}\left(K-3 P-E_{5}\right)=3, \\
& h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)=2, \\
& h^{0}\left(K-6 P-E_{5}\right)=h^{0}\left(K-7 P-E_{5}\right)=1, \text { and } h^{0}\left(K-8 P-E_{5}\right)=0 .
\end{aligned}
$$

Let C_{3} be a unique cubic with $C_{3} . C \geqq 7 P+Q_{1}+\cdots+Q_{5}$. Then $C_{3}=C_{2} T_{P}$ with a conic C_{2} with $C_{2} . C \geqq 2 P$ and $C_{2} . C \not \geqq 3 P$.
Case: $E_{5} \geqq R$. We set $D_{4}=E_{5}-R$. Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 3 P+E_{5}=$ $3 P+R+D_{4}$. Then we get $C_{3}^{\prime}=C_{2}^{\prime} T_{P}$ with a conic C_{2}^{\prime} containing Q_{1}, \ldots, Q_{4}. This contradicts

$$
h^{0}\left(K-3 P-E_{5}\right) \neq h^{0}\left(K-5 P-E_{5}\right) .
$$

Case: $E_{5} \not \geqq R$. Let C_{3}^{\prime} be a cubic distinct from C_{3} with $C_{3}^{\prime} . C \geqq 5 P+E_{5}$ and $C_{3}^{\prime} . C \not \geqq 6 P$. Then we get $C_{3}^{\prime}=C_{2}^{\prime} T_{P}$ with a conic C_{2}^{\prime} such that $C_{2}^{\prime} . C \geqq E_{5}$ and $C_{2}^{\prime} . C \not \geqq P$. We have $C_{2} . C \geqq 2 P+E_{5}$, which implies that $C_{2} \cdot C_{2}^{\prime} \geqq E_{5}$. Hence C_{2} and C_{2}^{\prime} have a common component L_{0}. Namely, we have $C_{2}=L_{0} L_{1}$ and $C_{2}^{\prime}=L_{0} L^{\prime}$. Since $C_{2}^{\prime} . C \not \geqq P$, we have $L_{1} . C \geqq 2 P$. Hence $L_{1}=T_{P}$. Thus we have $C_{2}=L_{0} T_{P}$, which contradicts $h^{0}\left(K-8 P-E_{5}\right)=0$.
Thus, H is not DCP.
II-3) $H=2 H_{6}+\langle n, n+6\rangle$.

Assume that H is DCP. Then there are four points Q_{1}, Q_{2}, Q_{3} and Q_{4} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{4}\right)=6, h^{0}\left(K-P-E_{4}\right)=5, \\
& h^{0}\left(K-2 P-E_{4}\right)=h^{0}\left(K-3 P-E_{4}\right)=4, \\
& h^{0}\left(K-4 P-E_{4}\right)=h^{0}\left(K-5 P-E_{4}\right)=3, h^{0}\left(K-6 P-E_{4}\right)=2, \\
& h^{0}\left(K-7 P-E_{4}\right)=h^{0}\left(K-10 P-E_{4}\right)=1, \text { and } h^{0}\left(K-11 P-E_{4}\right)=0 .
\end{aligned}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 10 P+E_{4}$ and $C_{3} . C \not \geqq 11 P$. Hence we get $C_{3}=L_{0} T_{P}^{2}$ with a unique line L_{0} such that $L_{0} \not \supset P$.
Case: $E_{4} \not \geqq R$. We have $L_{0} . C \geqq E_{4}$. Let $C_{3}^{\prime} . C \geqq 3 P+E_{4}$. Then $C_{3}^{\prime} . L_{0} \geqq E_{4}$, which implies that $C_{3}^{\prime}=L_{0} C_{2}$ with a conic C_{2} satisfying $C_{2} . C \geqq 3 P$ because $L_{0} \not \supset P$. Hence we get $C_{2}=L T_{P}$ with a line L, which implies that $C_{3}^{\prime} . C \geqq$ $5 P+E_{4}$. Thus, we have $h^{0}\left(K-3 P-E_{4}\right)=h^{0}\left(K-5 P-E_{4}\right)$, which is a contradiction.
Case: $E_{4} \geqq R$. We set $D_{3}=E_{4}-R$. Let $C_{3}^{\prime} . C \geqq 3 P+E_{4}=3 P+R+D_{3}$. Then $C_{3}^{\prime}=T_{P} C_{2}$ with a conic C_{2} such that $C_{2} \cdot C \geqq \bar{D}_{3}$. Hence, $h^{0}\left(K-3 P-E_{4}\right)=$ $h^{0}\left(K-5 P-E_{4}\right)$, which is a contradiction.
Therefore, H is not DCP.
II-4) $H=2 J_{6}+\langle n, n+8\rangle$. Then $r(H)=1$. We set $Q_{1}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+Q_{1}$. Then we have $C_{3}=C_{2} T_{P}$ with a conic C_{2}. Hence we get

$$
h^{0}\left(K-3 P-Q_{1}\right)=h^{0}\left(K-5 P-Q_{1}\right)=6
$$

Hence, H is DCP.
II-5) $H=2 J_{6}+\langle n, n+12\rangle$. Then $r(H)=3$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. Then we have $h^{0}\left(K-E_{3}\right)=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P+E_{3}$. Then we have $C_{3}=L_{1} L T_{P}$ with a line L. Hence we get

$$
h^{0}\left(K-4 P-E_{3}\right)=h^{0}\left(K-6 P-E_{3}\right)=3
$$

Hence, H is DCP.
II-6) $H=2 J_{6}+\langle n, n+14\rangle$. By Theorem 3.1 in [3] H is not DCP.
II-7) $H=2 J_{6}+\langle n, n+16\rangle$.

Assume that H is DCP. Then there exists some point Q_{1} distinct from P such that

$$
h^{0}\left(K-4 P-Q_{1}\right)=5 \text { and } h^{0}\left(K-12 P-Q_{1}\right)=1 .
$$

Case: $Q_{1}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P+R$. Then $C_{3}=C_{2} T_{P}$ with a conic C_{2}, which means that $h^{0}\left(K-4 P-Q_{1}\right)=6$. This is a contradiction. Case: $Q_{1} \neq R$. There exists a unique cubic C_{3} with $C_{3} \cdot C \geqq 12 P+Q_{1}$. Then $C_{3}=T_{P}^{3}$, but $T_{P}^{3} . C \nexists 12 P+Q_{1}$. This is also a contradiction. Thus, H is not DCP.

II-8) $H=2 J_{6}+\langle n, n+22\rangle$. Then $r(H)=2$. Let L_{1} be a line through P different from the tangent line T_{P}. Let Q_{1} and Q_{2} be distinct points belonging to $L_{1} \cap C$. Let C_{3} be a cubic with $C_{3} . C \geqq 8 P+E_{2}$. Then $C_{3}=L_{1} T_{P}^{2}$, which
implies that

$$
h^{0}\left(K-8 P-E_{2}\right)=h^{0}\left(K-11 P-E_{2}\right)=1
$$

Thus, H is DCP.
II-9) $H=2 J_{6}+\langle n, n+24\rangle$. By Theorem 3.1 in [3] H is not DCP.
II-10) $H=2 J_{6}+\langle n, n+32\rangle$. Then $r(H)=1$. Let Q_{1} be a point of C distinct from R. Let L_{1} be the line through P and Q_{1}. Let C_{3} be a cubic with $C_{3} . C \geqq$ $11 P+Q_{1}$. Then we have $C_{3}=L_{1} T_{P}^{2}$. Hence we get $h^{0}\left(K-12 P-Q_{1}\right)=0$. Thus, H is DCP.
(III) The case $t(H)=2$. There are thirty kinds of numerical semigroups. We will show that half of the numerical semigroups are not DCP. Moreover, we will prove that the remaining half, i.e., fifteen numerical semigroups are DCP.

III-1) $H=2 J_{6}+\langle n, n+2, n+4\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{7}$. Then $C_{3}=L_{1} L_{2} L$ with a line L, which implies that

$$
h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=h^{0}\left(K-2 P-E_{7}\right)=3 .
$$

Hence, H is DCP.
III-2) $H=2 J_{6}+\langle n, n+2, n+6\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\odot	\times	\odot	\times	\downarrow
(n)	\circ	\times	\circ	\bullet	+10
	\circ	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are seven points Q_{1}, \ldots, Q_{7} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=3, \\
& h^{0}\left(K-2 P-E_{7}\right)=h^{0}\left(K-3 P-E_{7}\right)=2, \\
& h^{0}\left(K-4 P-E_{7}\right)=h^{0}\left(K-6 P-E_{7}\right)=1, \text { and } h^{0}\left(K-7 P-E_{7}\right)=0 .
\end{aligned}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 6 P+E_{7}$ and $C_{3} . C \not \geqq 7 P$. Hence we get $C_{3}=C_{2} T_{P}$ with a unique conic C_{2} such that $C_{2} . C \geqq P$ and $C_{2} . C \not \geqq 2 P$. Moreover, there is a cubic C_{3}^{\prime} with $C_{3}^{\prime} \neq C_{3}$ such that $\overline{C_{3}^{\prime}} . C \geqq 3 P+E_{7}$ and $C_{3}^{\prime} . C \nexists 4 P$. Then $E_{7} \nexists R$, because $C_{3}^{\prime} . C \nexists 4 P$. Hence, we get $C_{2} . C \geqq P+E_{7}$. Since $h^{0}\left(K-P-E_{7}\right)=3$, a cubic $C_{3}^{\prime \prime}$ with $C_{3}^{\prime \prime} . C \geqq P+E_{7}$ must be equal to $C_{2} L$ with a line L. Thus, we get $C_{3}^{\prime}=C_{2} L$ with a line L, which implies that $C . L \geqq 2 P$. Hence, we get $L=T_{P}$. Therefore, $C_{3}^{\prime}=C_{3}$, which is a contradiction. Thus, H is not DCP.

III-3) $H=2 J_{6}+\langle n, n+2, n+8\rangle$. Then $r(H)=5$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection
of C and L_{1}. We set $Q_{5}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{5}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}$, which implies that

$$
h^{0}\left(K-E_{5}\right)=h^{0}\left(K-P-E_{5}\right)=5
$$

Moreover, let $C_{3} . C \geqq 3 P+E_{5}$. Then $C_{3}=L_{1} L T_{P}$ with a line L, which implies that

$$
h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-6 P-E_{5}\right)=3
$$

Thus, H is DCP.
III-4) $H=2 J_{6}+\langle n, n+2, n+14\rangle$. Then $r(H)=6$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}$, which implies that

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=4
$$

Moreover, let $C_{3} . C \geqq 4 P+E_{6}$. Then $C_{3}=L_{1} L_{2} T_{P}$, which means that

$$
h^{0}\left(K-4 P-Q_{1}-\cdots-Q_{6}\right)=h^{0}\left(K-7 P-E_{6}\right)=1
$$

Hence, H is DCP.
III-5) $H=2 J_{6}+\langle n, n+2, n+16\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\odot	\times	\times	\times	\downarrow
(n)	\circ	\times	\odot	\bullet	+10
	\circ	\times	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are five points Q_{1}, \ldots, Q_{5} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{5}\right)=h^{0}\left(K-P-E_{5}\right)=5, \\
& h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-6 P-E_{5}\right)=2, \\
& h^{0}\left(K-7 P-E_{5}\right)=h^{0}\left(K-11 P-E_{5}\right)=1, \text { and } h^{0}\left(K-12 P-E_{5}\right)=0 .
\end{aligned}
$$

There exists a unique conic C_{3} with $C_{3} . C \geqq 11 P+E_{5}$. Then $C_{3}=L_{0} T_{P}^{2}$ with a line $L_{0} \neq T_{P}$ and $L_{0} \ni P$.
Case 1. Q_{1}, \ldots, Q_{5} are distinct from R. Then we have $L_{0} \ni Q_{1}, \ldots, Q_{5}$, which means that $h^{0}\left(K-E_{5}\right)=6$. This is a contradiction.
Case 2. Q_{1}, \ldots, Q_{4} are distinct from R, and $Q_{5}=R$. We have $L_{0} \ni P, Q_{1}, \ldots$, Q_{4}, which implies that $L_{0} L T_{P} \geqq 6 P+Q_{1}+\cdots+Q_{5}$ with a line L. Hence we get $h^{0}\left(K-6 P-E_{5}\right)=3$, which is a contradiction.
Case 3. $Q_{4}=Q_{5}=R$. We get $L_{0} . C \geqq Q_{1}+Q_{2}+Q_{3}+P$. If a cubic C_{3}^{\prime} has $C_{3}^{\prime} . C \geqq 3 P+E_{5}$, then $C_{3}^{\prime}=L_{0} C_{2}^{\prime}$ with $C_{2}^{\prime} . C \geqq 2 P+2 R$, because $L_{0} \neq T_{P}$. Hence, we get $C_{2}^{\prime}=L T_{P}$ with a line L satisfying $L . C \geqq R$. This contradicts $h^{0}\left(K-3 P-E_{5}\right)=3$. Hence H is not DCP.

III-6) $H=2 J_{6}+\langle n, n+2, n+24\rangle$. Then $r(H)=5$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let Q_{5} be a point different from R which does not lie in L_{1}. Let C_{3} be a cubic with $C_{3} . C \geqq E_{5}$. Then we get $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}$, which implies that

$$
h^{0}\left(K-E_{5}\right)=h^{0}\left(K-P-E_{5}\right)=5 .
$$

Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 7 P+E_{5}$. Then we get $C_{3}^{\prime}=L_{1} L T_{P}$ with a line $L \ni P, Q_{5}$, which implies that $h^{0}\left(K-8 P-E_{5}\right)=0$. Hence, H is DCP.

III-7) $H=2 J_{6}+\langle n, n+4, n+6\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\odot	\odot	\times	\downarrow
(n)	\times	\circ	\circ	\bullet	+10
	\circ	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. There are seven points Q_{1}, \ldots, Q_{7} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{7}\right)=3, h^{0}\left(K-P-E_{7}\right)=h^{0}\left(K-3 P-E_{7}\right)=2 \\
& h^{0}\left(K-4 P-E_{7}\right)=h^{0}\left(K-5 P-E_{7}\right)=1, \text { and } h^{0}\left(K-6 P-E_{7}\right)=0
\end{aligned}
$$

Case: $Q_{7}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{7}$. Then $C_{3}=C_{2} T_{P}$ with a conic C_{2} satisfying $C_{2} . C \geqq Q_{1}+\cdots+Q_{6}$. Hence $C_{3} . C \geqq 5 P+E_{7}$. This is a contradiction.
Case: $Q_{i} \neq R$ for all i. There exists a unique cubic C_{3} with $C_{3} . C \geqq 5 P+E_{7}$. Then $C_{3}=C_{2} T_{P}$ with a conic C_{2} such that $C_{2} . C \not \geqq P$ and $C_{2} C \geqq E_{7}$. Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq E_{7}$. Since $h^{0}\left(K-E_{7}\right)=3$ and $C_{2} C \geqq E_{7}$, we have $C_{3}=C_{2} L$ with a line L. Moreover, assume that $C_{3} . C \geqq 2 P+E_{7}$. Then $C_{3}=C_{2} T_{P}$, because $P \notin C_{2}$. Hence we get $h^{0}\left(K-2 P-E_{7}\right)=1$. This is a contradiction. Hence, H is not DCP.

III-8) $H=2 J_{6}+\langle n, n+4, n+8\rangle$.

Assume that H is DCP. Then there are six points Q_{1}, \ldots, Q_{6} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{6}\right)=4, h^{0}\left(K-P-E_{6}\right)=h^{0}\left(K-2 P-E_{6}\right)=3, \\
& h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-5 P-E_{6}\right)=2, \\
& h^{0}\left(K-6 P-E_{6}\right)=h^{0}\left(K-7 P-E_{6}\right)=1, \text { and } h^{0}\left(K-8 P-E_{6}\right)=0 .
\end{aligned}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 7 P+E_{6}$ and $C_{3} . C \not \geqq 8 P$. Then we get $C_{3}=C_{2} T_{P}$ with a unique conic C_{2} such that $C_{2} . C \geqq 2 P$ and $C_{2} . C \not \geqq 3 P$. Moreover, there is a cubic C_{3}^{\prime} with $C_{3}^{\prime} \neq C_{3}$ such that $C_{3}^{\prime} . C \geqq 5 P+E_{6}$ and $C_{3}^{\prime} . C \nexists 6 P$. Then $C_{3}^{\prime}=C_{2}^{\prime} T_{P}$ with a conic C_{2}^{\prime} such that $C_{2}^{\prime} \neq C_{2}$ and $C_{2}^{\prime} . C \nexists P$.
Case 1. $E_{6} \geqq R$. We set $D_{5}=E_{6}-R$. Then we get $C_{2} \cdot C_{2}^{\prime} \geqq D_{5}$, which implies that C_{2} and C_{2}^{\prime} have a common line L_{1}. We set $C_{2}=L_{1} L_{2}$ with a line L_{2} satisfying $L_{2} . C \geqq 2 P$. Hence, we get $L_{2}=T_{P}$. This is a contradiction.
Case 2. $E_{6} \nexists R$. Then we get $C_{2} \cdot C_{2}^{\prime} \geqq E_{6}$, which implies that C_{2} and C_{2}^{\prime} have a common line L_{1}. By the same way as in the above we get a contradiction. Thus, H is not DCP.

III-9) $H=2 J_{6}+\langle n, n+4, n+12\rangle$. Then $r(H)=6$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. Then we have $h^{0}\left(K-E_{6}\right)=4$. Let C_{3} be a cubic with $C_{3} . C \geqq P+E_{6}$. Then we get $C_{3}=L_{1} L_{2} L$ with a line L which implies that

$$
h^{0}\left(K-P-E_{6}\right)=h^{0}\left(K-2 P-E_{6}\right)=3
$$

Moreover, let $C_{3} . C \geqq 4 P+E_{6}$. Then we get $C_{3}=L_{1} L_{2} T_{P}$, which means that

$$
h^{0}\left(K-4 P-E_{6}\right)=h^{0}\left(K-7 P-E_{6}\right)=1
$$

Thus, H is DCP.
III-10) $H=2 J_{6}+\langle n, n+4, n+16\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\odot	\times	\times	\downarrow
(n)	\times	\circ	\odot	\bullet	+10
	\circ	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are six points Q_{1}, \ldots, Q_{6} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{6}\right)=4, h^{0}\left(K-P-E_{6}\right)=h^{0}\left(K-2 P-E_{6}\right)=3, \text { and } \\
& h^{0}\left(K-6 P-E_{6}\right)=0 .
\end{aligned}
$$

Since $h^{0}\left(K-2 P-E_{6}\right)=3$, some five points of $P, P, Q_{1}, \ldots, Q_{6}$ are collinear or the eight points are on a conic C_{2}. If Q_{1}, \ldots, Q_{5} are collinear, then $h^{0}(K-$ $\left.E_{6}\right) \geqq 5$, which is a contradiction. If P, Q_{1}, \ldots, Q_{4} are collinear, then $h^{0}(K-$ $\left.P-E_{6}\right) \geqq 4$, which is a contradiction. If $P, P, Q_{1}, \ldots, Q_{3}$ are collinear, then the line is T_{P}, which is a contradiction. If the eight points are on a conic C_{2}, then $C_{2} T_{P} . C \geqq 7 P+E_{6}$, which contradicts $h^{0}\left(K-6 P-E_{6}\right)=0$. Hence, H is not DCP.

III-11) $H=2 J_{6}+\langle n, n+6, n+8\rangle$. Then $r(H)=5$. Let L_{1} be a line neither through P nor R. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. We set $Q_{5}=R$. Then we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a
cubic with $C_{3} . C \geqq 2 P+Q_{1}+\cdots+Q_{5}$. Then $C_{3}=L_{1} T_{P} L$ with a line L, which implies that

$$
h^{0}\left(K-2 P-E_{5}\right)=\cdots=h^{0}\left(K-5 P-E_{5}\right)=3
$$

Thus, H is DCP.
III-12) $H=2 J_{6}+\langle n, n+6, n+12\rangle$.

Assume that H is DCP. Then there are six points Q_{1}, \ldots, Q_{6} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{6}\right)=4, h^{0}\left(K-P-E_{6}\right)=3, \\
& h^{0}\left(K-2 P-E_{6}\right)=h^{0}\left(K-3 P-E_{6}\right)=2, \\
& h^{0}\left(K-4 P-E_{6}\right)=h^{0}\left(K-6 P-E_{6}\right)=1, \text { and } h^{0}\left(K-7 P-E_{6}\right)=0 .
\end{aligned}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 6 P+E_{6}$ and $C_{3} . C \not \geqq 7 P$. Hence we get $C_{3}=T_{P} C_{2}$ with a unique conic C_{2} such that $C_{2} . C \geqq P$ and $C_{2} . C \not \geqq 2 P$. Moreover, there is a cubic C_{3}^{\prime} with $C_{3}^{\prime} \neq C_{3}$ such that $C_{3}^{\prime} . C \geqq 3 P+E_{6}$ and $C_{3}^{\prime} . C \not \geqq 4 P$. Then $E_{6} \not \geqq R$, because $C_{3}^{\prime} . C \not \geqq 4 P$. Hence we get $C_{3}^{\prime} . C_{2} \geqq P+E_{6}$. Thus, C_{3}^{\prime} and C_{2} have a common component.
Case 1. C_{2} is irreducible. We have $C_{3}^{\prime}=C_{2} L_{0}$ with a line L_{0} satisfying $L_{0} . C \geqq 2 P$. Hence $L_{0}=T_{P}$, which contradicts $C_{3}^{\prime} . C \not \geqq 4 P$.
Case 2. C_{2} is not irreducible. We have $C_{2}=L_{0} L_{1}$ and $C_{3}^{\prime}=L_{0} C_{2}^{\prime}$ with lines L_{0}, L_{1} and a conic C_{2}^{\prime}. First, assume that $L_{0} \not \supset P$. Then $C_{2}^{\prime} . C \geqq 3 P$, which implies that $C_{2}^{\prime}=T_{P} L$ with a line L. Thus, $C_{3}^{\prime} . C \geqq 5 P$, which is a contradiction. Secondly, we assume that $L_{0} \ni P$, which implies that $L_{1} \not \supset P$. Then we have $L_{0} . C \nexists P+D_{4}$ for any divisor D_{4} of degree 4 with $D_{4}<E_{6}$, because we have $h^{0}\left(K-P-E_{6}\right)=3$. Hence we get $C_{2}^{\prime} . C \geqq 2 P+D_{3}$ and $L_{1} . C \geqq D_{3}$ for some divisor D_{3} of degree with $D_{3}<E_{6}$. Hence, we get $C_{2}^{\prime}=L_{1} L_{2}$ with a line L_{2} satisfying $L_{2} . C \geqq 2 P$. Thus, $L_{2}=T_{P}$. This is a contradiction.
Therefore, H is not DCP.
III-13) $H=2 H_{6}+\langle n, n+6, n+14\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\times	\odot	\times	\downarrow
(n)	\times	\odot	\circ	\bullet	+10
	\times	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are five points Q_{1}, \ldots, Q_{5} such that

$$
\begin{gathered}
h^{0}\left(K-E_{5}\right)=5, h^{0}\left(K-P-E_{5}\right)=4, \\
h^{0}\left(K-2 P-E_{5}\right)=h^{0}\left(K-3 P-E_{5}\right)=3, \\
h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)=2, \\
h^{0}\left(K-6 P-E_{5}\right)=h^{0}\left(K-10 P-E_{5}\right)=1 \text { and } h^{0}\left(K-11 P-E_{5}\right)=0 .
\end{gathered}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 10 P+E_{5}$ and $C_{3} . C \not \geqq 11 P$. Hence we get $C_{3}=T_{P}^{2} L_{0}$ with a unique line L_{0} such that $L_{0} \not \nexists P$.
Case: $E_{5} \nexists R$. We have $L_{0} . C \geqq E_{5}$. Then we get $h^{0}\left(K-E_{5}\right)=6$, which is a contradiction.
Case: $E_{5} \geqq R$. We set $D_{4}=E_{5}-R$. Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 3 P+E_{5}=$ $3 P+R+D_{4}$. Then $C_{3}^{\prime}=T_{P} C_{2}$ with a conic C_{2} satisfying $C_{2} . C \geqq D_{4}$. Hence, we get $h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)$, which is a contradiction.
Therefore, H is not DCP.
III-14) $H=2 J_{6}+\langle n, n+6, n+22\rangle$.

Assume that H is DCP. Then there are five points Q_{1}, \ldots, Q_{5} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{5}\right)=5, h^{0}\left(K-P-E_{5}\right)=4 \\
& h^{0}\left(K-2 P-E_{5}\right)=h^{0}\left(K-3 P-E_{5}\right)=3, \text { and } \\
& h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)=2
\end{aligned}
$$

Since $h^{0}\left(K-3 P-E_{5}\right)=3$, some five points of $P, P, P, Q_{1}, \ldots, Q_{5}$ are collinear or the eight points $P, P, P, Q_{1}, \ldots, Q_{5}$ are on a conic C_{2}. If Q_{1}, \ldots, Q_{5} are collinear, this contradicts $h^{0}\left(K-E_{5}\right)=5$. If P, Q_{1}, \ldots, Q_{4} are collinear, this contradicts $h^{0}\left(K-P-E_{5}\right)=4$. If $P, P, Q_{1}, Q_{2}, Q_{3}$ are collinear, the line is T_{P}, which is a contradiction. If P, P, P, Q_{1}, Q_{2} are collinear, the line is T_{P}, which is a contradiction. Hence, the eight points $P, P, P, Q_{1}, \ldots, Q_{5}$ are on a conic C_{2}. Then $C_{2}=T_{P} L$ with a line L. Hence, we get $h^{0}\left(K-5 P-E_{5}\right)=3$. This is a contradiction. Hence, H is not DCP.

III-15) $H=2 J_{6}+\langle n, n+8, n+12\rangle$. Then $r(H)=4$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. We set $Q_{4}=R$. Then we have $h^{0}\left(K-E_{4}\right)=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{4}$. Then we get $C_{3}=L_{1} T_{P} L$ with a line L, which implies that

$$
h^{0}\left(K-3 P-E_{4}\right)=h^{0}\left(K-6 P-E_{4}\right)=3
$$

Hence, H is DCP.

III-16) $H=2 J_{6}+\langle n, n+8, n+14\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\times	\times	\odot	\downarrow
(n)	\times	\odot	\times	\bullet	+10
	\times	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are four points Q_{1}, \ldots, Q_{4} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-E_{4}\right)=6, h^{0}\left(K-P-E_{4}\right)=5, \\
& h^{0}\left(K-2 P-E_{4}\right)=4, h^{0}\left(K-3 P-E_{4}\right)=h^{0}\left(K-5 P-E_{4}\right)=3, \\
& h^{0}\left(K-6 P-E_{4}\right)=h^{0}\left(K-7 P-E_{4}\right)=2, \\
& h^{0}\left(K-8 P-E_{4}\right)=h^{0}\left(K-10 P-E_{4}\right)=1 \text { and } h^{0}\left(K-11 P-E_{4}\right)=0 .
\end{aligned}
$$

There is a unique cubic C_{3} such that $C_{3} . C \geqq 10 P+E_{4}$ and $C_{3} . C \nsupseteq 11 P$. Hence we get $C_{3}=T_{P}^{2} L_{0}$ with a unique line L_{0} such that $L_{0} . C \nexists P$. Moreover, there is a cubic C_{3}^{\prime} with $C_{3}^{\prime} \neq C_{3}$ such that $C_{3}^{\prime} . C \geqq 7 P+E_{4}$ and $C_{3}^{\prime} . C \not \geqq 8 P$. Then $C_{3}^{\prime}=T_{P} C_{2}$ with a conic C_{2} such that $C_{2} . C \geqq 2 P$.
Case 1. $E_{4} \geqq 2 R$. We have $C_{2} . C \geqq 2 P+R$, which means that $C_{2}=T_{P} L$. Hence, we get $C_{3}^{\prime}=T_{P}^{2} L$. We set $D_{2}=E_{4}-2 R$. Then we have $L_{0} . L \geqq D_{2}$, which implies that $L=L_{0}$. Hence we get $C_{3}=C_{3}^{\prime}$, which is a contradiction. Case 2. $E_{4} \geqq R$ and $E_{4} \not \geqq 2 R$. We set $D_{3}=E_{4}-R$. Then we have $L_{0} . C \geqq D_{3}$ and $C_{2} . C \geqq 2 P+D_{3}$. Hence, we get $L_{0} . C_{2} \geqq D_{3}$, which implies that $C_{2}=L_{0} L$ with a line L. Since $L_{0} \not \supset P$, we have $L . C \geqq 2 P$, which means that $L=T_{P}$. Hence we get $C_{3}^{\prime}=T_{P}^{2} L_{0}=C_{3}$. This is a contradiction.
Case 3. $E_{4} \nexists R$. We have $L_{0} . C \geqq E_{4}$ and $C_{2} \cdot C \geqq 2 P+E_{4}$. Hence we get $C_{2}=L_{0} L$ with a line L with $L . C \geqq 2 P$. Hence we get $L=T_{P}$. This is a contradiction.
Thus, H is not DCP.
III-17) $H=2 J_{6}+\langle n, n+8, n+16\rangle$. Then $r(H)=2$. We set $Q_{1}=Q_{2}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+2 R$. Then we have $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni R$. Hence we get

$$
h^{0}\left(K-3 P-E_{2}\right)=h^{0}\left(K-5 P-E_{2}\right)=5
$$

Similarly we get

$$
h^{0}\left(K-7 P-E_{2}\right)=h^{0}\left(K-10 P-E_{2}\right)=3 .
$$

Thus, H is DCP.
III-18) $H=2 J_{6}+\langle n, n+8, n+22\rangle$. Then $r(H)=3$. Let L_{1} be a line through P different from T_{P}. Take two distinct points Q_{1} and Q_{2} on the intersection of C and L_{1}. We set $Q_{3}=R$. Then we have $h^{0}\left(K-E_{3}\right)=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{3}$. Then we get $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, Q_{2}$.

Hence we get

$$
h^{0}\left(K-5 P-E_{3}\right)=h^{0}\left(K-3 P-E_{3}\right)=6-2=4 .
$$

Moreover, let $C_{3} . C \geqq 8 P+E_{3}$. Then we have $C_{3}=T_{P}^{2} L_{1}$, which means that

$$
h^{0}\left(K-8 P-E_{3}\right)=h^{0}\left(K-11 P-E_{3}\right)=1 .
$$

Hence, H is DCP.
III-19) $H=2 J_{6}+\langle n, n+8, n+24\rangle$.

Assume that H is DCP. Then there are two points Q_{1} and Q_{2} distinct from P such that

$$
h^{0}\left(K-11 P-E_{2}\right)=h^{0}\left(K-15 P-E_{2}\right)=1 .
$$

Hence there is a unique cubic C_{3} with $C_{3} . C \geqq 15 P+E_{2}$. Then $C_{3}=T_{P}^{3}$, which implies that $Q_{1}=Q_{2}=R$. On the other hand, $T_{P}^{2} L . C \geqq 11 P+2 R$ with a line $L \ni P$, which means that $h^{0}\left(K-11 P-E_{2}\right)=2$. This is a contradiction. Hence H is not DCP.

III-20) $H=2 J_{6}+\langle n, n+8, n+32\rangle$. Then $r(H)=2$. Let Q_{1} be a point distinct from P and R. We set $Q_{2}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+Q_{1}+R$. Then $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}$. Hence, we get

$$
h^{0}\left(K-5 P-E_{2}\right)=h^{0}\left(K-3 P-E_{2}\right)=5
$$

Moreover, let $C_{3} . C \geqq 11 P+Q_{1}+R$. Then $C_{3}=T_{P}^{2} L_{0}$ with the line L_{0} through P and Q_{1}, which implies that $h^{0}\left(K-12 P-E_{2}\right)=0$. Thus, H is DCP.

III-21) $H=2 J_{6}+\langle n, n+12, n+14\rangle$. Then $r(H)=5$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}) on the intersection of C and $L_{1}\left(\right.$ resp,$\left.L_{2}\right)$ such that $Q_{i} \notin L_{1}$ for $i=4,5$. Then we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P+E_{5}$. Then $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-7 P-E_{5}\right)=1 .
$$

Hence, H is DCP.
III-22) $H=2 J_{6}+\langle n, n+12, n+16\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\times	\times	\times	\downarrow
(n)	\odot	\times	\odot	\bullet	+10
	\circ	\times	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are four points Q_{1}, \ldots, Q_{4} such that

$$
\begin{aligned}
& h^{0}\left(K-P-E_{4}\right)=5, h^{0}\left(K-5 P-E_{4}\right)=h^{0}\left(K-6 P-E_{4}\right)=2 \\
& \text { and } h^{0}\left(K-11 P-E_{4}\right)=1
\end{aligned}
$$

Hence there exists a cubic C_{3} with $C_{3} . C \geqq 11 P+E_{4}$. We have $C_{3}=T_{P}^{2} L_{0}$ with the line $L_{0} \ni P$.
Case 1. Q_{1}, \ldots, Q_{4} are distinct from R. The line L_{0} contains the five points P, Q_{1}, \ldots, Q_{4}, which is a contradiction.
Case 2. $Q_{1} \neq R, Q_{2} \neq R, Q_{3} \neq R$ and $Q_{4}=R$. We have $L_{0} T_{P} L \cdot C \geqq 6 P+E_{4}$ with a line L, which is a contradiction.
Case 3. $Q_{3}=Q_{4}=R$. We have $T_{P} C_{2} . C \geqq 5 P+R+Q_{1}+Q_{2}+R$ with a conic $C_{2} \ni Q_{1}, Q_{2}, R$, which is a contradiction.
Thus H is not DCP.
III-23) $H=2 J_{6}+\langle n, n+12, n+24\rangle$. Then $r(H)=4$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. Let Q_{4} be a point with $Q_{4} \neq R$ which does not lie in L_{1}. Then we have $h^{0}\left(K-E_{4}\right)=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P+E_{4}$. Then we have $C_{3}=L_{1} T_{P} L$ with a line $L \ni Q_{4}$. Hence we get

$$
h^{0}\left(K-4 P-E_{4}\right)=h^{0}\left(K-6 P-E_{4}\right)=2
$$

Moreover, let $C_{3} . C \geqq 8 P+E_{4}$. Then $C_{3}=T_{P}^{2} L_{1}$ with the line $L_{1} \ni Q_{4}$, which is a contradiction. Hence, we get $h^{0}\left(K-8 P-E_{4}\right)=0$. Thus, H is DCP.

III-24) $H=2 J_{6}+\langle n, n+14, n+16\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\times	\times	\times	\times	\downarrow
(n)	\times	\odot	\odot	\bullet	+10
	\times	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Assume that H is DCP. Then there are four points Q_{1}, \ldots, Q_{4} distinct from P such that

$$
h^{0}\left(K-6 P-E_{4}\right)=h^{0}\left(K-10 P-E_{4}\right)=1 .
$$

There is a unique cubic C_{3} with $C_{3} \cdot C \geqq 10 P+E_{4}$. Then $C_{3}=T_{P}^{2} L_{0}$ with the line L_{0} such that $T_{P} \cup L_{0} \ni Q_{1}, \ldots, Q_{4}$.
Case: Q_{1}, \ldots, Q_{4} are different from R. We have $T_{P} L_{0} L . C \geqq 6 P+E_{4}$ with a line $L \ni P$. This contradicts $h^{0}\left(K-6 P-E_{4}\right)=1$.
Case: $Q_{4}=R$. We have $T_{P} C_{2} . C \geqq 6 P+E_{4}$ with a conic $C_{2} . C \geqq P+Q_{1}+$ $Q_{2}+Q_{3}$. This is a contradiction.
Thus, H is not DCP.
III-25) $H=2 J_{6}+\langle n, n+14, n+22\rangle$. Then $r(H)=4$. Let L_{1} and L_{2} be distinct lines through P different from T_{P}. Take distinct points Q_{1} and Q_{2} (resp. Q_{3} and Q_{4}) on the intersection of C and L_{1} (resp. L_{2}) such that
$Q_{i} \notin L_{1}$ for $i=3,4$. Then we have $h^{0}\left(K-E_{4}\right)=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 6 P+E_{4}$. Then we get $C_{3}=T_{P} L_{1} L_{2}$. Thus we obtain

$$
h^{0}\left(K-6 P-E_{4}\right)=h^{0}\left(K-7 P-E_{4}\right)=1 \text { and } h^{0}\left(K-8 P-E_{4}\right)=0
$$

Thus, H is DCP.
III-26) $H=2 J_{6}+\langle n, n+16, n+22\rangle$.

Assume that H is DCP. Then there are three points Q_{1}, Q_{2} and Q_{3} such that

$$
h^{0}\left(K-7 P-E_{3}\right)=h^{0}\left(K-11 P-E_{3}\right)=1 \text { and } h^{0}\left(K-12 P-E_{3}\right)=0
$$

Let C_{3} be a unique cubic with $C_{3} . C \geqq 11 P+Q_{1}+Q_{2}+Q_{3}$. Then we have $C_{3}=T_{P}^{2} L_{0}$ with the line L_{0} which contains at least P and Q_{3} by renumbering Q_{1}, Q_{2} and Q_{3}.
Case 1. Q_{1}, Q_{2} and Q_{3} are distinct from R. Then $L_{0} . C \geqq P+Q_{1}+Q_{2}+Q_{3}$. Hence $T_{P} L_{0} L_{P} . C \geqq 7 P+Q_{1}+Q_{2}+Q_{3}$ with a line $L_{P} \ni P$, which contradicts $h^{0}\left(K-7 P-E_{3}\right)=1$.
Case 2. Let $Q_{1} \neq R, Q_{2} \neq R$ and $Q_{3}=R$. Then $L_{0} . C \geqq P+Q_{1}+Q_{2}$. Hence $T_{P} L_{0} L_{P} . C \geqq 7 P+E_{3}$ with a line $L_{P} \ni P$. This is a contradiction.
Case 3. Let $Q_{1} \neq R$ and $Q_{2}=Q_{3}=R$. Then $T_{P}^{2} L_{Q_{1}} . C \geqq 10 P+E_{3}$ with a line $L_{Q_{1}} \ni Q_{1}$, which contradicts $h^{0}\left(K-10 P-E_{3}\right)=1$.
Case 4. Let $Q_{1}=Q_{2}=Q_{3}=R$. We have $L_{0} \ni P, R$, which implies that $L_{0}=T_{P}$. Hence, $T_{P}^{3} . C \geqq 15 P+E_{3}$, which is a contradiction.
Thus, H is not DCP.
III-27) $H=2 J_{6}+\langle n, n+16, n+24\rangle$.

Assume that H is DCP. Then we have

$$
h^{0}\left(K-7 P-Q_{1}-Q_{2}\right)=2 \text { and } h^{0}\left(K-15 P-Q_{1}-Q_{2}\right)=1 .
$$

Let C_{3} be a unique cubic with $C_{3} . C \geqq 15 P+Q_{1}+Q_{2}$. Then we have $C_{3}=T_{P}^{3}$, which implies that $Q_{1}=Q_{2}=R$. We obtain $T_{P}^{2} L . C \geqq 10 P+2 R$ with a line L, which means that $h^{0}\left(K-10 P-Q_{1}-Q_{2}\right)=3$. This is a contradiction. Hence, H is not DCP .

III-28) $H=2 J_{6}+\langle n, n+16, n+32\rangle$.

Assume that H is DCP. Then there are two points Q_{1} and Q_{2} distinct from P such that

$$
\begin{aligned}
& h^{0}\left(K-5 P-E_{2}\right)=4, h^{0}\left(K-7 P-E_{2}\right)=h^{0}\left(K-10 P-E_{2}\right)=2, \\
& \text { and } h^{0}\left(K-11 P-E_{2}\right)=1
\end{aligned}
$$

Let C_{3} be a unique cubic with $C_{3} . C \geqq 11 P+E_{2}$. Then we have $C_{3}=T_{P}^{2} L_{0}$ with a line $L_{0} \ni P$. Here, we may assume that $Q_{1} \neq R$. Assume that $Q_{2} \neq R$. Then $L_{0} \cdot C \geqq P+E_{2}$. Let $C_{3}^{\prime} . C \geqq 10 P+E_{2}$. Then $C_{3}^{\prime}=T_{P}^{2} L_{0}$. This is a contradiction. Hence we get $Q_{2}=R$. Let $C_{3}^{\prime \prime}=T_{P} C_{2}$ with a conic C_{2} satisfying $C_{2} . C \geqq Q_{1}$. Then we have $C_{3}^{\prime \prime} . C \geqq 5 P+E_{2}$. This is a contradiction. Hence H is not DCP.

III-29) $H=2 H_{6}+\langle n, n+22, n+24\rangle$. Then $r(H)=3$. Let $Q_{1} \cdot Q_{2}$ and Q_{3} be three points different from P and R which are not collinear. We have $h^{0}\left(K-E_{3}\right)=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 8 P+E_{3}$. Then $C_{3}=T_{P}^{2} L$ with a line $L \ni Q_{1}, Q_{2}$ and Q_{3}. This is a contradiction. Hence, we obtain $h^{0}\left(K-8 P-E_{3}\right)=0$. Thus H is DCP.

III-30) $H=2 J_{6}+\langle n, n+24, n+32\rangle$. Then $r(H)=2$. Let L_{1} be a line passing through neither P nor R. Take two distinct points Q_{1} and Q_{2} on L_{1}. Let C_{3} be a cubic with $C_{3} \cdot C \geqq 10 P+E_{2}$. Then we get $C_{3}=T_{P}^{2} L_{1}$, which means that $h^{0}\left(K-11 P-E_{2}\right)=0$. Hence, H is DCP.
(IV) The case $t(H)=3$. There are thirty five kinds of numerical semigroups. We will show that all the thirty five numerical semigroups are DCP.

IV-1) $H=2 J_{6}+\langle n, n+2, n+4, n+6\rangle$.

Let L_{1}, L_{2} and L_{3} be distinct three lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}, Q_{8} and Q_{9}) on the intersection of C and L_{1} (resp. L_{2}, L_{3}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$ and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=8,9$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{9}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-3 P-E_{9}\right)=1 \text { and } h^{0}\left(K-4 P-E_{9}\right)=0 .
$$

IV-2) $H=2 J_{6}+\langle n, n+2, n+4, n+8\rangle$. Then $r(H)=8$. Let L_{1} and L_{2} be distinct lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. We set $Q_{8}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{8}$. Then $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{8}$, which implies that
$h^{0}\left(K-E_{8}\right)=h^{0}\left(K-2 P-E_{8}\right)=2$ and $h^{0}\left(K-3 P-E_{8}\right)=h^{0}\left(K-7 P-E_{8}\right)=1$.
IV-3) $H=2 J_{6}+\langle n, n+2, n+4, n+16\rangle$. Then $r(H)=8$. Let L_{1} and L_{2} be distinct lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. Let Q_{8} be a point different from R which lies on neither L_{1} nor L_{2}. Let C_{3} be a cubic with $C_{3} . C \geqq Q_{1}+\cdots+Q_{8}$. Then $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{8}$, which implies that

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-2 P-E_{8}\right)=2 \text { and } h^{0}\left(K-4 P-E_{8}\right)=0
$$

IV-4) $H=2 J_{6}+\langle n, n+2, n+6, n+8\rangle$. Then $r(H)=8$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let L_{2} be a line through neither P nor R. Take distinct points Q_{5}, Q_{6} and Q_{7} on the intersection of C and L_{2} such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. We set $Q_{8}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{8}$. Then $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{8}$, which implies that

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=2 .
$$

Moreover, let $C_{3} . C \geqq 2 P+Q_{1}+\cdots+Q_{8}$. Then $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-2 P-E_{8}\right)=h^{0}\left(K-6 P-E_{8}\right)=1
$$

IV-5) $H=2 J_{6}+\langle n, n+2, n+6, n+14\rangle$. Then $r(H)=8$. Let L_{1}, L_{2} and L_{3} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}, Q_{7} and Q_{8}) on the intersection of C and L_{1} (resp. $\left.L_{2}, L_{3}\right)$ such that $Q_{i} \notin L_{1}$ for $i=5,6$ and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=7,8$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{8}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}, Q_{7}, Q_{8}$, which implies that

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=2
$$

$$
h^{0}\left(K-2 P-E_{8}\right)=h^{0}\left(K-3 P-E_{8}\right)=1 \text { and } h^{0}\left(K-4 P-E_{8}\right)=0
$$

IV-6) $H=2 J_{6}+\langle n, n+2, n+8, n+14\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6$. We set $Q_{7}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{7}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}, Q_{7}$, which implies that

$$
h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=3
$$

Let $C_{3}^{\prime} . C \geqq 3 P+E_{7}$. Then we have $C_{3}^{\prime}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-3 P-E_{7}\right)=h^{0}\left(K-7 P-E_{7}\right)=1 \text { and } h^{0}\left(K-8 P-E_{7}\right)=0 .
$$

IV-7) $H=2 J_{6}+\langle n, n+2, n+8, n+16\rangle$. Then $r(H)=6$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. We set $Q_{5}=Q_{6}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} . C \geqq 2 R$, which implies that

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=4 .
$$

Let $C_{3}^{\prime} . C \geqq 3 P+E_{6}$. Then we have $C_{3}^{\prime}=L_{1} T_{P} L$ with a line $L \ni R$, which implies that
$h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-6 P-E_{6}\right)=2$ and $h^{0}\left(K-7 P-E_{6}\right)=h^{0}\left(K-11 P-E_{6}\right)$.
IV-8) $H=2 J_{6}+\langle n, n+2, n+8, n+24\rangle$. Then $r(H)=6$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let Q_{5} be a point different from R which does not lie in L_{1}. We set $Q_{6}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}$, which implies that

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=4
$$

Moreover, let $C_{3} . C \geqq 3 P+E_{6}$. Then $C_{3}=L_{1} T_{P} L$ with a line $L \ni Q_{5}$, which means that

$$
h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-6 P-E_{6}\right)=2 \text { and } h^{0}\left(K-8 P-E_{6}\right)=0
$$

IV-9) $H=2 J_{6}+\langle n, n+2, n+14, n+16\rangle$. Then $r(H)=7$. Let L_{1}, L_{2} and L_{3} be distinct lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}, Q_{7}) on the intersection of C and L_{1} (resp. L_{2}, L_{3}) such that $Q_{i} \notin L_{1}$ for $i=5,6$ and $Q_{7} \notin L_{1} \cup L_{2}$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{7}$. Then $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}, Q_{7}$, which implies that

$$
h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=3 \text { and } h^{0}\left(K-4 P-E_{7}\right)=0 .
$$

IV-10) $H=2 J_{6}+\langle n, n+2, n+16, n+24\rangle$. Then $r(H)=6$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let L_{2} be a line not through P. Let Q_{5} and Q_{6} be distinct points different from R which lie on the intersection of C and L_{2} such that $Q_{i} \notin L_{1}$ for $i=5,6$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then we get $C_{3}=L_{1} C_{2}$ with a conic $C_{2} \ni Q_{5}, Q_{6}$, which implies that

$$
h^{0}\left(K-E_{6}\right)=h^{0}\left(K-P-E_{6}\right)=6-2=4
$$

Moreover, let $C_{3} . C \geqq 4 P+E_{6}$. Then we have $C_{3}=L_{1} T_{P} L_{2}$, which means that $h^{0}\left(K-7 P-E_{6}\right)=0$.

IV-11) $H=2 J_{6}+\langle n, n+4, n+6, n+8\rangle$. Then $r(H)=8$. Let L_{1} and L_{2} be distinct lines not through P. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. We set $Q_{8}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{8}$. Then $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{8}$, which implies that

$$
h^{0}\left(K-E_{8}\right)=2 \text { and } h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-5 P-E_{8}\right)=1 .
$$

IV-12) $H=2 J_{6}+\langle n, n+4, n+6, n+12\rangle$. Then $r(H)=8$. Let L_{1}, L_{2} and L_{3} be distinct lines through P different from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}, Q_{7} and Q_{8}) on the intersection of C and L_{1} (resp, L_{2}, L_{3}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$ and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=7,8$. Then we have $h^{0}\left(K-E_{8}\right)=2$. Let C_{3} be a cubic with $C_{3} . C \geqq P+E_{8}$. Then we get $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-3 P-E_{8}\right)=1 \text { and } h^{0}\left(K-4 P-E_{8}\right)=0
$$

IV-13) $H=2 J_{6}+\langle n, n+4, n+8, n+12\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. We set $Q_{7}=R$. Since any five points of Q_{1}, \ldots, Q_{7} are not collinear, we have $h^{0}\left(K-E_{7}\right)=3$. Let C_{3} be a cubic with $C_{3} . C \geqq P+E_{7}$. Then we get $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{7}$, which implies that

$$
\begin{aligned}
& h^{0}\left(K-P-E_{7}\right)=h^{0}\left(K-2 P-E_{7}\right)=2 \text { and } \\
& h^{0}\left(K-3 P-E_{7}\right)=h^{0}\left(K-7 P-E_{7}\right)=1
\end{aligned}
$$

IV-14) $H=2 J_{6}+\langle n, n+4, n+8, n+16\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines not through P. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. Let $Q_{7}=R$. Since any five points of Q_{1}, \ldots, Q_{7} are not collinear, we have $h^{0}\left(K-E_{7}\right)=3$. Moreover, any five points of P, Q_{1}, \ldots, Q_{7} are not collinear and the eight points P, Q_{1}, \ldots, Q_{7} are not on a conic, hence we get $h^{0}\left(K-P-E_{7}\right)=2$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+Q_{1}+\cdots+Q_{7}$. Then we get $C_{3}=T_{P} L_{1} L_{2}$, which implies that

$$
h^{0}\left(K-3 P-E_{7}\right)=h^{0}\left(K-5 P-E_{7}\right)=1 \text { and } h^{0}\left(K-6 P-E_{7}\right)=0 .
$$

We need to prove that $h^{0}\left(K-2 P-E_{7}\right)=2$. It suffices to give two distinct cubics C_{31} and C_{32} on some plane curve of degree 6 with C_{31}. $C \geqq 2 P+E_{7}$ and $C_{32 . C} \geqq 2 P+E_{7}$. Let C be a non-singular plane curve of degree 6 whose equation is

$$
\begin{aligned}
z^{3}\left(y z^{2}-y^{3}\right) & +a x^{3}\left(x^{2} z+y\left(-(c+d) x^{2}+c y^{2}-y z+d z^{2}\right)\right) \\
& +b y^{3}\left(x^{2} z+y\left(-2 x^{2}+y^{2}-y z+z^{2}\right)\right)=0
\end{aligned}
$$

where a, b, c and d are general constants. Let $P=(0: 0: 1)$ and T_{P} the line defined by $y=0$. Then we have $R=(1: 0: 0)$. Let L_{1} and L_{2} be the lines defined by the equations $z+y=0$ and $z-y=0$ respectively. We set $C_{31}=T_{P} L_{1} L_{2}$. Let C_{32} be the cubic defined by the equation $x^{2} z+y\left(-2 x^{2}+\right.$ $\left.y^{2}-y z+z^{2}\right)=0$. We set $Q_{1}=(1:-1: 1), Q_{2}=(-1:-1: 1), Q_{3}=R, Q_{4}=$ $(1: 1: 1), Q_{5}=(-1: 1: 1)$ and $Q_{6}=R$. Then we obtain

$$
C_{31} \cdot C_{32}=2 P+Q_{1}+Q_{2}+Q_{4}+Q_{5}+3 R .
$$

IV-15) $H=2 J_{6}+\langle n, n+4, n+12, n+16\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}
and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. Let Q_{7} be a point different from R which lies on neither L_{1} nor L_{2}. Since any 5 points of Q_{1}, \ldots, Q_{7} are not collinear, we have $h^{0}\left(K-E_{7}\right)=3$. Let C_{3} be a cubic with $C_{3} . C \geqq P+Q_{1}+\cdots+Q_{7}$. Then we have $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{7}$. Hence we get

$$
h^{0}\left(K-P-E_{7}\right)=h^{0}\left(K-2 P-E_{7}\right)=2 \text { and } h^{0}\left(K-4 P-E_{7}\right)=0
$$

IV-16) $H=2 J_{6}+\langle n, n+6, n+8, n+12\rangle$. Then $r(H)=7$. Let L_{1} be a line through neither P nor R. Let L_{2} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Take distinct points Q_{5} and Q_{6} on the intersection of C and L_{2} with $Q_{i} \notin L_{1}$ for $i=5,6$. We set $Q_{7}=R$. Since any 5 points of Q_{1}, \ldots, Q_{7} are not collinear, we have $h^{0}\left(K-E_{7}\right)=3$. Let C_{3} be a cubic with $C_{3} . C \geqq 2 P+E_{7}$. Then we get $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-2 P-E_{7}\right)=h^{0}\left(K-6 P-E_{7}\right)=1
$$

IV-17) $H=2 J_{6}+\langle n, n+6, n+8, n+14\rangle$. Then $r(H)=6$. Let L_{1} be a line through neither P nor R. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. We set $Q_{5}=Q_{6}=R$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{6}$. Then $C_{3}=L_{1} C_{2}$ where C_{2} is a conic with $C_{2} . C \geqq 2 R$, which implies that $h^{0}\left(K-E_{6}\right)=4$. Moreover, let $C_{3} . C \geqq 2 P+E_{6}$. Then $C_{3}=L_{1} T_{P} L$ with a line $L \ni R$, which implies that

$$
\begin{aligned}
& h^{0}\left(K-2 P-E_{6}\right)=h^{0}\left(K-5 P-E_{6}\right)=2 \text { and } \\
& h^{0}\left(K-6 P-E_{6}\right)=h^{0}\left(K-10 P-E_{6}\right)=1 .
\end{aligned}
$$

IV-18) $H=2 J_{6}+\langle n, n+6, n+8, n+22\rangle$. Then $r(H)=6$. Let L_{1} be a line through neither P nor R. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let Q_{5} be a point distinct from P and R which does not lie in L_{1}. We set $Q_{6}=R$. Then we have $h^{0}\left(K-E_{6}\right)=4$. Let C_{3} be a cubic with $C_{3} . C \geqq 2 P+E_{6}$. Then we have $C_{3}=L_{1} T_{P} L$ with a line $L \ni Q_{5}$. Hence we get

$$
h^{0}\left(K-2 P-E_{6}\right)=h^{0}\left(K-5 P-E_{6}\right)=2 \text { and } h^{0}\left(K-7 P-E_{6}\right)=0 .
$$

IV-19) $H=2 J_{6}+\langle n, n+6, n+12, n+14\rangle$. Then $r(H)=7$. Let L_{1}, L_{2} and L_{3} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp, $\left.L_{2}, L_{3}\right)$ such that $Q_{i} \notin L_{1}$ for $i=4,5,6$ and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=6,7$. Then we have $h^{0}\left(K-E_{7}\right)=3$. Let C_{3} be a cubic with $C_{3} . C \geqq 2 P+E_{7}$. Then we get $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-2 P-E_{7}\right)=h^{0}\left(K-3 P-E_{7}\right)=1 \text { and } h^{0}\left(K-4 P-E_{7}\right)=0 .
$$

IV-20) $H=2 J_{6}+\langle n, n+6, n+14, n+22\rangle$. Then $r(H)=6$. Let L_{1} and L_{2} be distinct lines not through P. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. Since any five points of Q_{1}, \ldots, Q_{6} are not collinear, we have
$h^{0}\left(K-E_{6}\right)=4$. Any five points of $P, P, Q_{1}, \ldots, Q_{6}$ are not collinear and the eight points $P, P, Q_{1}, \ldots, Q_{6}$ are not on a conic. Hence we get $h^{0}\left(K-2 P-E_{6}\right)=$ 2. If a cubic C_{3} satisfies that $C_{3} . C \geqq 4 P+E_{6}$, then $C_{3}=T_{P} L_{1} L_{2}$ and $C_{3} . C \not \geqq 6 P$. Hence, we get $h^{0}\left(K-6 \bar{P}-E_{6}\right)=0$. We need to prove that $h^{0}\left(K-3 P-E_{6}\right)=2$. Hence it suffices to give two distinct cubics C_{31} and C_{32} on some non-singular plane curve of degree 6 with C_{31}. $C_{32}=3 P+E_{6}$. Let C be a curve whose equation is

$$
\begin{aligned}
z^{3}\left(y z^{2}-y^{3}\right) & +a x^{3}\left(x^{2} z+y\left(-(c+d) x^{2}+c y^{2}-y z+d z^{2}\right)\right) \\
& +b y^{3}\left(x^{3}+y\left((-1-d) x^{2}-x y+y^{2}+d z^{2}\right)\right)=0
\end{aligned}
$$

where a, b, c and d are general constants. Let $P=(0: 0: 1)$ and T_{P} the line defined by $y=0$. Then we have $R=(1: 0: 0)$. Let L_{1} and L_{2} be the lines defined by the equations $x+z=0$ and $x-z=0$ respectively. We set $Q_{1}=$ $(-1: 1: 1), Q_{2}=(-1:-1: 1), Q_{3}=Q_{2}, Q_{4}=(1: 1: 1), Q_{5}=(1:-1: 1)$ and $Q_{6}=Q_{5}$. Then we have $L_{1} . C \geqq Q_{1}+Q_{2}+Q_{3}$ and $L_{2} . C \geqq Q_{4}+Q_{5}+Q_{6}$. We set $C_{31}=T_{P} L_{1} L_{2}$. Let C_{32} be the cubic defined by the equation

$$
x^{3}+y\left((-1-d) x^{2}-x y+y^{2}+d z^{2}\right)=0 .
$$

Then we obtain $C_{31} . C_{32}=3 P+E_{6}$.
IV-21) $H=2 J_{6}+\langle n, n+8, n+12, n+14\rangle$. Then $r(H)=6$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}) on the intersection of C and L_{1} (resp, L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5$. We set $Q_{6}=R$. Then we have $h^{0}\left(K-E_{6}\right)=4$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{6}$. Then we get $C_{3}=L_{1} L_{2} T_{P}$, which implies that

$$
h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-7 P-E_{6}\right)=1 \text { and } h^{0}\left(K-8 P-E_{6}\right)=0
$$

IV-22) $H=2 J_{6}+\langle n, n+8, n+12, n+16\rangle$. Then $r(H)=5$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. We set $Q_{4}=Q_{5}=R$. Then we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{5}$. Then we get $C_{3}=L_{1} T_{P} L$ with a line $L \ni R$, which implies that

$$
\begin{aligned}
& h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-6 P-E_{5}\right)=2 \text { and } \\
& h^{0}\left(K-7 P-E_{5}\right)=h^{0}\left(K-11 P-E_{5}\right)=1 .
\end{aligned}
$$

IV-23) $H=2 J_{6}+\langle n, n+8, n+12, n+24\rangle$. Then $r(H)=5$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. Let Q_{4} be a point different from R which does not lie in L_{1}. We set $Q_{5}=R$. Then we get $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{5}$. Then we have $C_{3}=L_{1} T_{P} L$ with a line $L \ni Q_{4}$. Hence we get

$$
h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-6 P-E_{5}\right)=2 \text { and } h^{0}\left(K-8 P-E_{5}\right)=0 .
$$

IV-24) $H=2 J_{6}+\langle n, n+8, n+14, n+16\rangle$. Then $r(H)=5$. Let L_{1} be a line through neither P nor R. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. We set $Q_{4}=Q_{5}=R$. Then we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{5}$. Then we have $C_{3}=L_{1} T_{P} L$ with a line $L \ni Q_{5}$. Hence we get

$$
h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)=2 .
$$

Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 6 P+E_{5}$. Then we have $C_{3}^{\prime}=L_{1} T_{P}^{2}$. Hence we get
$h^{0}\left(K-6 P-E_{5}\right)=h^{0}\left(K-10 P-E_{5}\right)=1$ and $h^{0}\left(K-11 P-E_{5}\right)=0$.
IV-25) $H=2 J_{6}+\langle n, n+8, n+14, n+22\rangle$. Then $r(H)=5$. Let L_{1} and L_{2} be distinct lines through P different from T_{P}. Take distinct points Q_{1} and Q_{2} (resp. Q_{3} and Q_{4}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=3,4$. We set $Q_{5}=R$. Since the five points Q_{1}, \ldots, Q_{5} are not collinear, we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{5}$. Then we get $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, \ldots, Q_{4}$. Hence we have

$$
h^{0}\left(K-5 P-E_{5}\right)=h^{0}\left(K-3 P-E_{5}\right)=6-4=2 .
$$

Moreover, let $C_{3} . C \geqq 6 P+E_{5}$. Then we must have $C_{3}=T_{P} L_{1} L_{2}$, which means that

$$
h^{0}\left(K-6 P-E_{5}\right)=h^{0}\left(K-7 P-E_{5}\right)=1 \text { and } h^{0}\left(K-8 P-E_{5}\right)=0 .
$$

IV-26) $H=2 J_{6}+\langle n, n+8, n+16, n+22\rangle$. Then $r(H)=4$. Let L_{1} be a line through P different from T_{P}. Take distinct points Q_{1} and Q_{2} on the intersection of C and L_{1}. We set $Q_{3}=Q_{4}=R$. Then we have $h^{0}\left(K-E_{4}\right)=10-4=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{4}$. Then $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, Q_{2}, Q_{3}$, which implies that

$$
h^{0}\left(K-5 P-E_{4}\right)=h^{0}\left(K-3 P-E_{4}\right)=6-3=3 .
$$

Moreover, let $C_{3} . C \geqq 7 P+E_{4}$. Then we must have $C_{3}=T_{P}^{2} L_{1}$, which means that

$$
h^{0}\left(K-7 P-E_{4}\right)=h^{0}\left(K-11 P-E_{4}\right)=1 .
$$

IV-27) $H=2 J_{6}+\langle n, n+8, n+16, n+24\rangle$. Then $r(H)=3$. We set $Q_{1}=Q_{2}=Q_{3}=R$. Then we get

$$
\begin{aligned}
& h^{0}\left(K-E_{3}\right)=10-3=7, \\
& h^{0}\left(K-3 P-E_{3}\right)=h^{0}\left(K-5 P-E_{3}\right)=6-2=4, \\
& h^{0}\left(K-7 P-E_{3}\right)=h^{0}\left(K-10 P-E_{3}\right)=2, \text { and } \\
& h^{0}\left(K-11 P-E_{3}\right)=h^{0}\left(K-15 P-E_{3}\right)=1 .
\end{aligned}
$$

IV-28) $H=2 J_{6}+\langle n, n+8, n+16, n+32\rangle$. Then $r(H)=3$. Let Q_{1} be a point of C distinct from P and R. We set $Q_{2}=Q_{3}=R$. We have
$h^{0}\left(K-E_{3}\right)=10-3=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{3}$. Then $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, Q_{2}$. Hence, we get

$$
h^{0}\left(K-5 P-E_{3}\right)=h^{0}\left(K-3 P-E_{3}\right)=6-2=4 .
$$

Moreover, let $C_{3} . C \geqq 7 P+Q_{1}+2 R$. Then $C_{3}=T_{P}^{2} L$ with a line $L \ni Q_{1}$. Thus, we obtain

$$
h^{0}\left(K-7 P-E_{3}\right)=h^{0}\left(K-10 P-E_{3}\right)=2 \text { and } h^{0}\left(K-12 P-E_{3}\right)=0 .
$$

IV-29) $H=2 J_{6}+\langle n, n+8, n+22, n+24\rangle$. Then $r(H)=4$. Let Q_{1}, Q_{2} and Q_{3} be distinct points different from P and R which are not collinear. Let $Q_{4}=R$. Then we have $h^{0}\left(K-E_{4}\right)=10-4=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+Q_{1}+Q_{2}+Q_{3}+R$. Then we get $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, Q_{2}, Q_{3}$. Hence, we obtain

$$
h^{0}\left(K-5 P-E_{4}\right)=h^{0}\left(K-3 P-E_{4}\right)=6-3=3 .
$$

Moreover, let $C_{3} . C \geqq 8 P+Q_{1}+\cdots+Q_{4}$. Then we have $C_{3}=T_{P}^{2} L$ with a line $L \ni Q_{1}, Q_{2}, Q_{3}$. This is impossible. Hence, we get $h^{0}\left(K-8 P-E_{4}\right)=0$.

IV-30) $H=2 J_{6}+\langle n, n+8, n+24, n+32\rangle$. Then $r(H)=3$. Let Q_{1} and Q_{2} be two points of C distinct from P and R. Let L_{1} be the line through Q_{1} and Q_{2}. Let $Q_{3}=R$. We have $h^{0}\left(K-E_{3}\right)=10-3=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{3}$. Then we get $C_{3}=T_{P} C_{2}$ with a conic $C_{2} \ni Q_{1}, Q_{2}$. Hence, we obtain

$$
h^{0}\left(K-5 P-E_{3}\right)=h^{0}\left(K-3 P-E_{3}\right)=6-2=4 .
$$

Moreover, let $C_{3} \cdot C \geqq 11 P+E_{3}$. This is impossible.
IV-31) $H=2 J_{6}+\langle n, n+12, n+14, n+16\rangle$. Then $r(H)=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P$. Then $C_{3}=T_{P} C_{2}$ with a conic C_{2}. Hence we get $h^{0}(K-4 P)=6$. Thus if Q_{1}, \ldots, Q_{6} are general points, then we have

$$
h^{0}\left(K-E_{6}\right)=10-6=4 \text { and } h^{0}\left(K-4 P-E_{6}\right)=0
$$

IV-32) $H=2 J_{6}+\langle n, n+12, n+16, n+24\rangle$. Then $r(H)=5$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. Let L_{2} be a line through neither P nor R. Take distinct points Q_{4} and Q_{5} which do not lie on L_{1}. Then we have $h^{0}\left(K-E_{5}\right)=10-5=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 4 P+E_{5}$. Then we have $C_{3}=T_{P} L_{1} L_{2}$. Hence we get

$$
h^{0}\left(K-4 P-E_{5}\right)=h^{0}\left(K-6 P-E_{5}\right)=1 \text { and } h^{0}\left(K-7 P-E_{5}\right)=0
$$

IV-33) $H=2 J_{6}+\langle n, n+14, n+16, n+22\rangle$. Then $r(H)=5$. Let L_{1} and L_{2} be distinct lines not through P. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5$. Since the five points Q_{1}, \ldots, Q_{5} are not collinear, we have $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 6 P+E_{5}$. This is impossible.

IV-34) $H=2 J_{6}+\langle n, n+16, n+22, n+24\rangle$. Then $r(H)=4$. Let L_{1} be a line through P and L_{2} a line not through P. Take distinct points Q_{1} and
Q_{2} (resp. Q_{3} and Q_{4}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=3,4$. Then we have $h^{0}\left(K-E_{4}\right)=10-4=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 7 P+E_{4}$. This is impossible.

IV-35) $H=2 J_{6}+\langle n, n+16, n+24, n+32\rangle$. Then $r(H)=3$. Let L_{1} be a line not through P. Let Q_{1}, Q_{2} and Q_{3} be distinct points on the intersection of C and L_{1}. Then we have $h^{0}\left(K-E_{3}\right)=10-3=7$. Let C_{3} be a cubic with $C_{3} . C \geqq 7 P+E_{3}$. Then we get $C_{3}=T_{P}^{2} L_{1}$. Hence, we get

$$
h^{0}\left(K-7 P-E_{3}\right)=h^{0}\left(K-10 P-E_{3}\right)=1 \text { and } h^{0}\left(K-11 P-E_{3}\right)=0 .
$$

(V) The case $t(H)=4$. There are fourteen kinds of numerical semigroups. We will prove that all such numerical semigroups are DCP.

V-1) $H=2 J_{6}+\langle n, n+2, n+4, n+6, n+8\rangle$.
If Q_{1}, \ldots, Q_{10} are general points, then we have $h^{0}\left(K-E_{10}\right)=0$.
V-2) $H=2 J_{6}+\langle n, n+2, n+4, n+8, n+16\rangle$.

$(\rightarrow+2)$	$(n+2)$	$(n+4)$	$(n+6)$	$(n+8)$	
\bullet	\odot	\odot	\times	\odot	\downarrow
(n)	\circ	\circ	\odot	\bullet	+10
	\circ	\circ	\bullet	$(n+18)$	
	\circ	\bullet	$(n+26)$	$\swarrow+8(\downarrow+10)$	
	\bullet	$(n+34)$			
	$(n+42)$				

Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5}, Q_{6} and Q_{7}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. Let L_{3} be a line not through P. Take distinct points Q_{8} and Q_{9} on the intersection of C and L_{3} such that $Q_{i} \notin L_{1} \cup L_{2}$ for $i=8,9$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{9}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-2 P-E_{9}\right)=1 \text { and } h^{0}\left(K-3 P-E_{9}\right)=0 .
$$

V-3) $H=2 J_{6}+\langle n, n+2, n+6, n+8, n+14\rangle$. Then $r(H)=9$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let L_{2} and L_{3} be distinct lines not through P. Take distinct points Q_{5}, Q_{6} and Q_{7} (resp. Q_{8} and Q_{9}) on the intersection of C and L_{2} (resp. L_{3}) such that $Q_{i} \notin L_{1}$ for $i=5,6,7$ and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=8,9$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{9}$. Then $C_{3}=L_{1} L_{2} L_{3}$, which implies that

$$
h^{0}\left(K-E_{9}\right)=h^{0}\left(K-P-E_{9}\right)=1 \text { and } h^{0}\left(K-2 P-E_{9}\right)=0 .
$$

V-4) $H=2 J_{6}+\langle n, n+2, n+8, n+14, n+16\rangle$. Then $r(H)=8$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let L_{2} be a line not through P. Take distinct points Q_{5}, Q_{6} and Q_{7} on the intersection of C and L_{2} which do not lie on L_{1}. Let Q_{8} be a point different from R which lies on neither L_{1} nor L_{2}. Let C_{3} be a cubic with $C_{3} . C \geqq E_{8}$. Then $C_{3}=L_{1} L_{2} L$ with a line $L \ni Q_{8}$, which implies
that

$$
h^{0}\left(K-E_{8}\right)=h^{0}\left(K-P-E_{8}\right)=2 \text { and } h^{0}\left(K-3 P-E_{8}\right)=0
$$

V-5) $H=2 J_{6}+\langle n, n+2, n+8, n+16, n+24\rangle$. Then $r(H)=7$. Let L_{1} be a line not through P. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} on the intersection of C and L_{1}. Let L_{2} be a line through P distinct from T_{P}. Let Q_{5}, Q_{6} and Q_{7} be distinct points which lie on the intersection of C and L_{2} such that $Q_{i} \notin L_{1}$ for $i=5,6,7$. Let C_{3} be a cubic with $C_{3} . C \geqq E_{7}$. Then we get $C_{3}=L_{1} L_{2} L$ with a line L, which implies that

$$
\begin{aligned}
& h^{0}\left(K-E_{7}\right)=h^{0}\left(K-P-E_{7}\right)=3 \\
& h^{0}\left(K-3 P-E_{7}\right)=h^{0}\left(K-6 P-E_{7}\right)=1, \text { and } \\
& h^{0}\left(K-7 P-E_{7}\right)=0
\end{aligned}
$$

V-6) $H=2 J_{6}+\langle n, n+4, n+6, n+8, n+12\rangle$. Then $r(H)=9$. Let Q_{1}, \ldots, Q_{9} be general points of C. Then we get

$$
h^{0}\left(K-E_{9}\right)=1 \text { and } h^{0}\left(K-P-E_{9}\right)=0
$$

V-7) $H=2 J_{6}+\langle n, n+4, n+8, n+12, n+16\rangle$. Then $r(H)=8$. Let L_{1} and L_{2} be distinct lines through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4}, Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5,6$. Let L_{3} be a line not through P. Take distinct points Q_{7} and Q_{8} on the intersection of C and L_{3} such that any five points of Q_{1}, \ldots, Q_{8} are not collinear and $Q_{i} \notin L_{1} \cup L_{2}$ for $i=7,8$. Then we have $h^{0}\left(K-E_{8}\right)=10-8=2$. Let C_{3} be a cubic with $C_{3} . C \geqq P+E_{8}$. Then we have $C_{3}=L_{1} L_{2} L_{3}$. Hence we get

$$
h^{0}\left(K-P-E_{8}\right)=h^{0}\left(K-2 P-E_{8}\right)=1 \text { and } h^{0}\left(K-3 P-E_{8}\right)=0
$$

V-8) $H=2 J_{6}+\langle n, n+6, n+8, n+12, n+14\rangle$. Then $r(H)=8$. If Q_{1}, \ldots, Q_{8} are general points, we have

$$
h^{0}\left(K-E_{8}\right)=2 \text { and } h^{0}\left(K-2 P-E_{8}\right)=0
$$

V-9) $H=2 J_{6}+\langle n, n+6, n+8, n+14, n+22\rangle$. Then $r(H)=7$. Let L_{1} and L_{2} be distinct lines through neither P nor R. Take distinct points Q_{1}, Q_{2}, Q_{3} and Q_{4} (resp. Q_{5} and Q_{6}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=5,6$. We set $Q_{7}=R$. We obtain $h^{0}\left(K-E_{7}\right)=3$. Let C_{3} be a cubic with $C_{3} . C \geqq 2 P+E_{7}$. Then we must have $C_{3}=L_{1} T_{P} L_{2}$. Hence, we get

$$
h^{0}\left(K-2 P-E_{7}\right)=h^{0}\left(K-5 P-E_{7}\right)=1 \text { and } h^{0}\left(K-6 P-E_{7}\right)=0
$$

$\mathrm{V}-10) H=2 J_{6}+\langle n, n+8, n+12, n+14, n+16\rangle$. Then $r(H)=7$. Since $h^{0}(K-3 P)=7$, we have

$$
h^{0}\left(K-E_{7}\right)=3 \text { and } h^{0}\left(K-3 P-E_{7}\right)=0
$$

for general points Q_{1}, \ldots, Q_{7}.
V-11) $H=2 J_{6}+\langle n, n+8, n+12, n+16, n+24\rangle$. Then $r(H)=6$. Let L_{1} be a line through P distinct from T_{P}. Take distinct points Q_{1}, Q_{2} and Q_{3} on the
intersection of C and L_{1}. Let L_{2} be a line not through P. Take distinct points Q_{4} and Q_{5} on the intersection of C and L_{2} such that $Q_{i} \notin L_{1}$ for $i=4,5$. We set $Q_{6}=R$. Then we have $h^{0}\left(K-E_{6}\right)=4$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{6}$. Then we have $C_{3}=L_{1} T_{P} L_{2}$. Hence we have

$$
h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-6 P-E_{6}\right)=1 \text { and } h^{0}\left(K-7 P-E_{6}\right)=0 .
$$

V-12) $H=2 J_{6}+\langle n, n+8, n+14, n+16, n+22\rangle$. Then $r(H)=6$. Let L_{1} and L_{2} be distinct lines through neither P nor R. Take distinct points Q_{1}, Q_{2} and Q_{3} (resp. Q_{4} and Q_{5}) on the intersection of C and L_{1} (resp. L_{2}) such that $Q_{i} \notin L_{1}$ for $i=4,5$. We set $Q_{6}=R$. We get $h^{0}\left(K-E_{6}\right)=4$. Let C_{3} be a cubic with $C . C_{3} \geqq 3 P+E_{6}$. Then we must have $C_{3}=T_{P} L_{1} L_{2}$. Hence we get

$$
h^{0}\left(K-3 P-E_{6}\right)=h^{0}\left(K-5 P-E_{6}\right)=1 \text { and } h^{0}\left(K-6 P-E_{6}\right)=0 .
$$

V-13) $H=2 J_{6}+\langle n, n+8, n+16, n+22, n+24\rangle$. Then $r(H)=5$. Let L_{1} be a line not through P. Take distinct points Q_{1}, Q_{2} and Q_{3} on the intersection of C and L_{1}. Let Q_{4} be a point of C not belonging to L_{1} with $Q_{4} \neq P$ and $Q_{4} \neq R$. We set $Q_{5}=R$. Since the five points Q_{1}, \ldots, Q_{5} are not collinear, we get $h^{0}\left(K-E_{5}\right)=5$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{5}$. Then we get $C_{3}=T_{P} L_{1} L$ with a line $L \ni Q_{4}$. Hence we have

$$
h^{0}\left(K-3 P-E_{5}\right)=h^{0}\left(K-5 P-E_{5}\right)=2
$$

Moreover, let $C_{3} . C \geqq 7 P+E_{5}$. Then we must have $L . C \geqq 2 P+Q_{4}$, which is impossible. Thus, we get $h^{0}\left(K-7 P-E_{5}\right)=0$.

V-14) $H=2 J_{6}+\langle n, n+8, n+16, n+24, n+32\rangle$. Then $r(H)=4$. We set $Q_{1}=Q_{2}=Q_{3}=R$. Let Q_{4} be a point of C different from P. Then we have $h^{0}\left(K-E_{4}\right)=6$. Let C_{3} be a cubic with $C_{3} . C \geqq 3 P+E_{4}$. Then $C_{3}=T_{P} C_{2}$ where C_{2} is a conic with $C_{2} . C \geqq 2 R+Q_{4}$. Hence, we get

$$
h^{0}\left(K-5 P-E_{4}\right)=h^{0}\left(K-3 P-E_{4}\right)=6-3=3 .
$$

Let C_{3}^{\prime} be a cubic with $C_{3}^{\prime} . C \geqq 7 P+E_{4}$. Then $C_{3}^{\prime}=T_{P}^{2} L$ where L is a line with $L . C \geqq R+Q_{4}$. Thus, we obtain

$$
h^{0}\left(K-7 P-E_{4}\right)=h^{0}\left(K-10 P-E_{4}\right)=1
$$

Let $C_{3}^{\prime \prime}$ be a cubic with $C_{3}^{\prime \prime} . C \geqq 11 P+E_{4}$. This is impossible.

References

[1] T. Harui and J. Komeda, Numerical semigroups of genus eight and double coverings of curves of genus three, Semigroup Forum 89 (2014), no. 3, 571-581. https://doi.org/ 10.1007/s00233-014-9590-3
[2] S. J. Kim and J. Komeda, Weierstrass semigroups on double covers of genus 4 curves, J. Algebra 405 (2014), 142-167. https://doi.org/10.1016/j.jalgebra.2014.02.006
[3] , Weierstrass semigroups on double covers of plane curves of degree 5, Kodai Math. J. 38 (2015), no. 2, 270-288. https://doi.org/10.2996/kmj/1436403890
[4] , Weierstrass semigroups on double covers of plane curves of degree six with total flexes, Bull. Korean Math. Soc. 55 (2018), no. 2, 611-624. https://doi.org/10.4134/ BKMS.b170195

Seon Jeong Kim
Department of Mathematics and RINS
Gyeongsang National University
Jinju 52828, Korea
Email address: skim@gnu.ac.kr
Jiryo Komeda
Department of Mathematics
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology
Atsugi 243-0292, Japan
Email address: komeda@gen.kanagawa-it.ac.jp

[^0]: Received September 27, 2018; Revised March 26, 2019; Accepted April 25, 2019.
 2010 Mathematics Subject Classification. Primary 14H55, 14H50, 14H30, 20 M 14.
 Key words and phrases. numerical semigroup, Weierstrass semigroup of a point, double cover of a curve, plane curve of degree 6 .

 This work was partially supported by JPS KAKENHI Grant Numbers 18 K 03228 and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016R1D1A1B01011730).

