• Title/Summary/Keyword: systems of equations

Search Result 2,236, Processing Time 0.042 seconds

HIGH-ORDER NEWTON-KRYLOV METHODS TO SOLVE SYSTEMS OF NONLINEAR EQUATIONS

  • Darvishi, M.T.;Shin, Byeong-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.19-30
    • /
    • 2011
  • In [21], we compared the Newton-Krylov method and some high-order methods to solve nonlinear systems. In this paper, we propose high-order Newton-Krylov methods combining the Newton-Krylov method with some high-order iterative methods to solve systems of nonlinear equations. We provide some numerical experiments including comparisons of CPU time and iteration numbers of the proposed high-order Newton-Krylov methods for several nonlinear systems.

ON A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS INVOLVING GRUSHIN TYPE OPERATOR

  • Nguyen, Thanh Chung
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.37-50
    • /
    • 2014
  • Using variational methods, we prove some results on the nonexistence and multiplicity of weak solutions for a class of semilinear elliptic systems of two equations involving Grushin type operators with sign-changing nonlinearities. We also shows that the similar results can be obtained for systems of m equations, where m is arbitrary.

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

Exact Controllability for Fuzzy Differential Equations in Credibility Space

  • Lee, Bu Young;Youm, Hae Eun;Kim, Jeong Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.145-153
    • /
    • 2014
  • With reasonable control selections on the space of functions, various application models can take the shape of a well-defined control system on mathematics. In the credibility space, controlability management of fuzzy differential equation is as much important issue as stability. This paper addresses exact controllability for fuzzy differential equations in the credibility space in the perspective of Liu process. This is an extension of the controllability results of Park et al. (Controllability for the semilinear fuzzy integro-differential equations with nonlocal conditions) to fuzzy differential equations driven by Liu process.

Kinematic Design Sensitivity Analysis of Suspension System Using a Symbolic Computation Method (기호계산 기법을 이용한 현가장치의 기구학적 민감도 해석)

  • 송성재;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.247-259
    • /
    • 1996
  • Kinematic design sensitivity analysis for vehicle in suspension systems design is performed. Suspension systems are modeled using composite joins to reduce the number of the constraint equations. This allows a semi-analytical approach that is computerized symbolic manipulation before numerical computations and that may compensate for their drawbacks. All the constraint equations including design variables are derived in symbolic equations for sensitivity analysis. By directly differentiating the equations with respect to design variables, sensitivity equations are obtained. Since the proposed method only requires the hard point data, sensitivity analysis is possible in suspension design stage.

  • PDF

AN ALGORITHM FOR SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS

  • YI, SUCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • It is shown that a new Krylov subspace method for solving symmetric indefinite systems of linear equations can be obtained. We call the method as the projection method in this paper. The residual vector of the projection method is maintained at each iteration, which may be useful in some applications.

  • PDF

On uniform asymptotic stability of the nonlinear differential system

  • Oh Young Sun;An Jeong Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.68-74
    • /
    • 2004
  • We investigate various $\phi(t)-stability$ of comparison differential equations and We obtain necessary and/or sufficient conditions for the asymptotic and uniform asymptotic stability of the differential equations x'=f( t, x)

  • PDF

Performance measurement of safety-critical systems based on ordinary differential equations and Petri nets: A case study of nuclear power plant

  • Nand Kumar Jyotish;Lalit Kumar Singh;Chiranjeev Kumar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.861-869
    • /
    • 2023
  • This article proposes a novel approach to measure the performance of Safety-Critical Systems (SCS). Such systems contain multiple processing nodes that communicate with each other is modeled by a Petri nets (PN). The paper uses the PN for the performance evaluation of SCS. A set of ordinary differential equations (ODEs) is derived from the Petri net model that represent the state of the system, and the solutions can be used to measure the system's performance. The proposed method can avoid the state space explosion problem and also introduces new metrics of performance, along with their measurement: deadlock, liveness, stability, boundedness, and steady state. The proposed technique is applied to Shutdown System (SDS) of Nuclear Power Plant (NPP). We obtained 99.887% accuracy of performance measurement, which proves the effectiveness of our approach.

IMPROVING THE SOLVABILITY OF ILL-CONDITIONED SYSTEMS OF LINEAR EQUATIONS BY REDUCING THE CONDITION NUMBER OF THEIR MATRICES

  • Farooq, Muhammad;Salhi, Abdellah
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.939-952
    • /
    • 2011
  • This paper is concerned with the solution of ill-conditioned Systems of Linear Equations (SLE's) via the solution of equivalent SLE's which are well-conditioned. A matrix is rst constructed from that of the given ill-conditioned system. Then, an adequate right-hand side is computed to make up the instance of an equivalent system. Formulae and algorithms for computing an instance of this equivalent SLE and solving it will be given and illustrated.