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Abstract

It is shown that a new Krylov subspace method for solving symmetric inde�nite

systems of linear equations can be obtained. We call the method as the projection

method in this paper. The residual vector of the projection method is maintained

at each iteration, which may be useful in some applications.

1. Introduction. The kth Krylov subspace Kk(r0; A) generated by an initial residual

vector r0 = b�Ax0 and A is de�ned by

Kk(r0; A) � spanfr0; Ar0; : : : ; A
k�1r0g:(1)

Iterative methods that choose corrections from the space Kk(r0; A) at each iteration

are called Krylov subspace methods. The GMRES method [7] is a Krylov subspace

method for solving systems of linear equations

Ax = b; where A 2 Rn�n is nonsingular:(2)

The kth iterate of GMRES can be characterized as xk = x0 + zk for a given initial

guess x0 2 Rn and the correction zk is chosen to minimize the norm of the residual

vector r(z) = r0 �Az over the kth Krylov subspace Kk(r0; A) at each iteration, i.e.,

kr0 �Azkk2 = min
z2Kk(r0;A)

kr0 �Azk2:(3)

If the Arnoldi process is applied with v1 = Ar0=kAr0k2 to generate a basis for the

Krylov subspace Kk(r0; A), simpler GMRES implementations of Walker and Zhou [8]

are obtained and the Arnoldi process is summarized as follows:

Algorithm 1.1 Arnoldi process

Initialize: Choose an initial guess v1 with kv1k2 = 1:

Iterate: For k = 1; 2; : : : ; do:

hi;k = vTi Avk; i = 1; 2; : : : ; k;

~vk+1 = Avk �
Pk

i=1 hi;kvi:

Set hk+1;k = k~vk+1k2:

If hk+1;k = 0, stop; otherwise,

vk+1 = ~vk+1=hk+1;k:

Key words: GMRES, MINRES, SYMMLQ, symmetric QMR, and Krylov subspace method.

AMS subject classi�cation. 65F10

29



30 SuCheol Yi

Without loss of generality we may assume the initial residual vector is nonzero. The

initial Arnoldi vector v1 = Ar0=kAr0k2 is then well-de�ned, since A is a nonsingular

matrix. Setting �1;1 = kAr0k2 gives the equation

Ar0 = �1;1v1;(4)

and the following equation is satis�ed by the Arnoldi process:

Avk�1 =
kX
i=1

�i;kvi for unique �
;
i;ks with �k;k > 0 for k > 1:(5)

From the equations (4) and (5) we have the following relation:

AUk = VkRk;(6)

where Uk = (r0; v1; : : : ; vk�1); Vk = (v1; : : : ; vk), and

Rk =

0
B@
�1;1 : : : �1;k

. . .
...

�k;k

1
CA :

Then the relation (6) reduces the least-squares problem (3) directly to an upper tri-

angular least-squares problem by decomposing the initial residual vector r0 as r0 =

�?

k r0 + VkV
T
k r0 for each k, where �?

k is the orthogonal projection onto the orthogonal

complement of the space Kk(v1; A).

We introduce another approach to Krylov subspace methods for solving symmetric

inde�nite linear systems, which is called the projection method in this paper. The pro-

jection method is closely related to the simpler GMRES method in that the projection

and simpler GMRES methods use the same initial basis vector v1 = Ar0=kAr0k2 in

applying the symmetric Lanczos and Arnoldi processes, respectively, and, in the sym-

metric case, the projection method can be derived from the simpler GMRES method

by �nding a search direction pk such that Apk = vk for each k. Both simpler GMRES

and the projection method maintain orthonormal bases of the space AKk(r0; A), which

permit residual minimization through projection of the residual onto AKk(r0; A)
?.

With simpler GMRES, the kth approximate solution is obtained by solving a k � k

upper triangular system. This is also done with the projection method, but only im-

plicitly. Because the projection method is based on the short recurrence symmetric

Lanczos process, the triangular system is tridiagonal and, therefore, one can update

the approximate solution using a three-term short recurrence formula. In contrast to

simpler GMRES, the usual GMRES implementation maintains an orthonormal basis

of Kk(r0; A) through the Arnoldi process, and, consequently, achieves residual mini-

mization through the solution of an upper Hessenberg least-squares problem. MINRES

[6] can be viewed as a specialization of the usual GMRES approach to the symmetric

case, in which the short recurrence symmetric Lanczos process is used to generate an

orthonormal basis of Kk(r0; A). The upper Hessenberg system is tridiagonal, and so
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solution of the upper Hessenberg least-squares problem is done implicitly in MINRES

by implementing a three-term short recurrence formula for updating the approximate

solution. In the symmetric inde�nite case without preconditioning, symmetric QMR

[2] is obtained using the same approach as MINRES. However, in solving the systems

of the preconditioned system

A0x0 = b0; where A0 =M�1
1 AM�1

2 ; x0 =M2x; and b0 =M�1
1 b;(7)

symmetric QMR is implemented by solving a quasi-minimization problem. Thus the

approach of the projection method is similar to that of simpler GMRES, while standard

GMRES, MINRES, and symmetric QMR follow an alternative approach. In section 2,

we give a derivation of the projection method and also present the results of numerical

experiments in section 3.

2. A derivation of the projection method. By applying the Arnoldi process

starting with v1 = Ar0=kAr0k2 we can have a set fv1; : : : ; vkg of orthonormal basis

vectors of the space Kk(v1; A). Suppose we have a vector pk such that Apk = vk for

each k. Then the kth residual vector rk in the simpler GMRES method is

rk = rk�1 � (rTk�1vk)vk(8)

= r0 �Azk�1 � (rTk�1vk)Apk

= r0 �A[zk�1 + (rTk�1vk)pk]:

By the last expression in equation (8) it is natural to de�ne the kth iterate xk of the

projection method as xk = xk�1 + (rTk�1vk)pk: Setting Pk = (p1; : : : ; pk) and Vk =

(v1; : : : ; vk) we need to have APk = Vk by the requirement of Apk = vk for each k. By

the relation AUk = VkRk in (6), the equation APk = Vk is equivalent to

Uk = PkRk:(9)

The search direction pk is then de�ned as

pk =

(
r0=�1;1 if k = 1
1

�k;k
(vk�1 � �1;kp1 � � � � � �k�1;kpk�1) if k > 1.

Then we have a long recursion formula to generate pk in general.

If A is symmetric, then an orthonormal basis fv1; : : : ; vkg of the space Kk(v1; A)

can be generated by the symmetric Lanczos process. Then the upper triangular matrix

Rk in (6) can be reduced to the form of0
BBBBBBBBBB@

�1;1 �1;2 �1;3 0 � � � 0

0 �2;2 �2;3 �2;4
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . �k�2;k

...
. . .

. . . �k�1;k
0 : : : : : : : : : 0 �k;k

1
CCCCCCCCCCA
:
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Therefore, we have a short recursion formula for pk by (9), i.e.,

pk =
1

�k;k
(vk�1 � �k�1;kpk�1 � �k�2;kpk�2) for k > 1;

where �k�2;k = vTk�2Avk�1; �k�1;k = vTk�1Avk�1; �k;k = k~vkk2; and

~vk = Avk�1 � �k�1;kvk�1 � �k�2;kvk�2:

Note that we may wish to apply the projection method for solving nonsymmetric

linear systems using the nonsymmetric Lanczos process to get a short recursion formula

for a search direction pk. However, we found that the projection method with the

nonsymmetric Lanczos process is very unstable for solving nonsymmetric linear systems.

Therefore, we consider only symmetric inde�nite systems in this paper. It is known

that there exists a symmetric positive de�nite matrix S such that M = S2 for a

given symmetric positive de�nite matrix M . Therefore, the MINRES, SYMMLQ, and

projection methods can be applied to the following system:

~A~x = ~b; where ~A = S�1AS�1; ~x = Sx; and ~b = S�1b:(10)

With symmetric positive de�nite preconditionersM , the projection method for a sym-

metric matrix A can be summarized as follows:

Algorithm 2.1 Projection method (symmetric A)

Initialize: Choose x0 and set r0 = b�Ax0,

z =M�1r0; u1 = Az;w1 =M�1u1; and �1 =
q
uT1 w1.

Update u1  u1=�1 and w1  w1=�1:

Compute �1 = rT0 w1.

Set r1 = r0 � �1u1; p1 = z=�1; and set x1 = x0 + �1p1:

Iterate: For k = 2; 3; : : : ; do:

Set uk = Awk�1:

For i = maxfk � 2; 1g; : : : ; k � 1; do:

Set ��i = uTkwi:

Update uk  uk � ��iui:

Set wk =M�1uk and �k =
q
uTkwk:

Update uk  uk=�k and wk  wk=�k:

Compute �k = rTk�1wk and set rk = rk�1 � �kuk.

Set pk =
1
�k

0
@wk�1 �

k�1X
i=maxfk�2;1g

��ipi

1
A and set

xk = xk�1 + �kpk.

3. Numerical Experiments. We present numerical experiments that show the

performance of the Krylov subspace methods for symmetric inde�nite systems discussed

in the previous sections. In our experiments, we also include the SYMMLQ method

[6] for solving symmetric inde�nite linear systems. Basically, the kth iterate xk of

SYMMLQ can be obtained by orthogonalizing the residual vector r(z) = r0�Az against

Kk(r0; A), whereas that of MINRES is obtained by minimizing the residual vector
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over the space Kk(r0; A) for each k. For a symmetric positive de�nite preconditioner

M , it can be shown that algorithms for the SYMMLQ, MINRES, symmetric QMR,

and projection method can be implemented with only one matrix-vector multiplication

with A and one preconditioner-vector solve with M at each iteration if MT
1 = M2

in implementing symmetric QMR. However, in implementing a preconditioner-vector

solve of the form Mw = r, factorizing the preconditioner M �rst, i.e., M = M1M2;

we may save 
oating-point operations by solving two preconditioning solves of the

form M1u = r and M2w = u instead of performing a preconditioner-vector solve with

M . Besides matrix-vector multiplication with A, two M1 and M2 preconditioning

solves or one preconditioner-vector solve with M , algorithms for the symmetric QMR,

MINRES, SYMMLQ, and projection methods use approximately 7n, 10n, 11n, and

12n multiplications and divisions, respectively.

We use a discretization of

�u+ cu = f in D;

u = 0 on @D;

for a test problem involving a symmetric linear system, where D = [0; 1] � [0; 1], and

c is a constant. The usual centered di�erence approximations were used in the dis-

cretization. We set f � x(1� x) + y(1� y) and used m = 64, where m is the number

of equally spaced interior points on each side of D, so that the resulting system has

dimension 4096. For a preconditioner we used �M + I, which is symmetric positive

de�nite, whereM is the discretized Laplacian matrix. In experiments of the SYMMLQ,

MINRES, symmetric QMR, and projection methods, we used Cholesky decomposition

of the preconditioner. Also, we used the vector (1; 1; : : : ; 1)T 2 Rn for the initial guess

and used double precision on Sun Microsystems workstations in all experiments. The

true residual norms kb�Axkk2 are monitored in assessing the comparative performance.

In the following Figure 1, the true residual norm curves generated by the MINRES,

SYMMLQ, symmetric QMR, and projection methods are monitored using values of c =

100 and m = 64. As shown in Figure 1, we could see that there were some di�erences

in the limits of reduction of the true residual norms. We regard these di�erences as

insigni�cant, since the di�erences are small relative to that of the satisfactory limit of

residual norms. The projection method is as numerically sound as MINRES, SYMMLQ,

symmetric QMR in all our experiments.

In the following Figure 2, we plotted the true residual norm reduction versus


oating-point operation counts for the MINRES, SYMMLQ, symmetric QMR, and

projection methods. We ran the algorithms for 80 iterations. Figure 2 shows that the

symmetric QMR, MINRES, projection methods need about the same number of oper-

ations to reach around the 10�10 level of residual norm reduction, although symmetric

QMR needs slightly fewer number of operations than the MINRES and projection

methods do. Figure 2 also shows that SYMMLQ requires approximately 10% more

operations relative to that of the other three methods for 10�10 level of residual norm

reduction.
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Figure 1: Log10 of the true residual norms vs. the number of iterations; c = 100 with

preconditioner �M + I, where M is the discretized Laplacian matrix. Solid curve:

MINRES; dashdot curve: symmetric QMR; dotted curve: algorithm 2.1; dashed curve:

SYMMLQ; m = 64.
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Figure 2: Log10 of the true residual norms vs. the number of 
oating-point operations;

c = 100 with preconditioner �M + I, where M is the discretized Laplacian matrix.

Solid curve: MINRES; dashdot curve: symmetric QMR; dotted curve: algorithm 2.1;

dashed curve: SYMMLQ; m = 64.
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4. Conclusion. In this paper, we have considered Krylov subspace methods for

solving large symmetric inde�nite linear systems and have introduced a new approach

for solving them, which is called the projection method in this paper. Our numerical

experiments showed that the projection method is as numerically sound as the MIN-

RES, SYMMLQ, and symmetric QMR methods. Furthermore, these methods require

roughly similar e�ort to achieve comparable residual norm reduction, although sym-

metric QMR is most e�cient and SYMMLQ is mostly cost by a slight margin. However,

only the symmetric QMR method allows use of arbitrary nonsingular symmetric indef-

inite preconditioners, which is an advantage of this method over the other methods.

The symmetric QMR and projection methods have also an advantage over MINRES

and SYMMLQ in easier programming.
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