• 제목/요약/키워드: systems approach method

검색결과 3,744건 처리시간 0.027초

Waypoints Assignment and Trajectory Generation for Multi-UAV Systems

  • Lee, Jin-Wook;Kim, H.-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.107-120
    • /
    • 2007
  • Coordination of multiple UAVs is an essential technology for various applications in robotics, automation, and artificial intelligence. In general, it includes 1) waypoints assignment and 2) trajectory generation. In this paper, we propose a new method for this problem. First, we modify the concept of the standard visibility graph to greatly improve the optimality of the generated trajectories and reduce the computational complexity. Second, we propose an efficient stochastic approach using simulated annealing that assigns waypoints to each UAV from the constructed visibility graph. Third, we describe a method to detect collision between two UAVs. FinallY, we suggest an efficient method of controlling the velocity of UAVs using A* algorithm in order to avoid inter-UAV collision. We present simulation results from various environments that verify the effectiveness of our approach.

개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계 (Design of Fuzzy Models with the Aid of an Improved Differential Evolution)

  • 김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Univector Field Method based Multi-Agent Navigation for Pursuit Problem

  • Viet, Hoang Huu;An, Sang-Hyeok;Chung, Tae-Choong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.86-93
    • /
    • 2012
  • This paper presents a new approach to solve the pursuit problem based on a univector field method. In our proposed method, a set of eight agents works together instantaneously to find suitable moving directions and follow the univector field to pursue and capture a prey agent by surrounding it from eight directions in an infinite grid-world. In addition, a set of strategies is proposed to make the pursuit problem more realistic in the real world environment. This is a general approach, and it can be extended for an environment that contains static or moving obstacles. Experimental results show that our proposed algorithm is effective for the pursuit problem.

시변지연을 가지는 LPV시스템의 H 샘플데이타 제어 (H Sampled-Data Control of LPV Systems with Time-varying Delay)

  • 유아연;이상문
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.121-127
    • /
    • 2015
  • This paper considers the problem of sampled-data control for continuous linear parameter varying (LPV) systems. It is assumed that the sampling periods are arbitrarily varying but bounded. Based on the input delay approach, the sampled-data control LPV system is transformed into a continuous time-delay LPV system. Some less conservative stabilization results represented by LMI (Linear Matrix Inequality) are obtained by using the Lyapunov-Krasovskii functional method and the reciprocally combination approach. The proposed method for the designed gain matrix should guarantee asymptotic stability and a specified level of performance on the closed-loop hybrid system. Numerical examples are presented to demonstrate the effectiveness and the improvement of the proposed method.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • 제10권3호
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

구조적 불확실성 접근을 이용한 RTP 시스템의 견실제어기 설계 (Robust controller design for RTP system using structured uncertainty approach)

  • 이상경;김종해;김해근;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.667-675
    • /
    • 1999
  • In this paper, we propose a robust controller design of RTP(Rapid Thermal Processing) system using structured uncertainty approach. Using the weighted mixed sensitivity function, we solve the robust stability problem against disturbance and temperature variation, and design a $\mu$ controller using curve fitting method against structured uncertainty. Also the reduction method should be requried because of the difficulty of implementaion with the obtained high order controller. We dal with robust stability and performance of RTP system by the design of $\mu$ controller for original model and Schur balanced reduced model. Finally the simulation results are proposed to show the validity of the proposed method.

  • PDF

다중 시간지연 공정을 위한 개선된 다중루프 PI 제어기 설계 (Design of Advanced Multi-loop PI Controller for Multi-delay Processes)

  • 트롱부;이문용
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.77-82
    • /
    • 2010
  • An analytical method for robust design of the multi-loop proportional-integral (PI) controller is proposed for various types of multi-delay processes. On the basis of the direct synthesis and generalized IMC-PID approach, the analytical tuning rules of the multi-loop PI controller are firstly derived for achieving the desired closed-loop response, and the structured singular value synthesis is then utilized for the tradeoffs between the robust stability and performance by adjusting only one design parameter (i.e., the closed-loop time constant). To verify the superiority of the proposed method, the simulation studies have been conducted on a wide variety of multivariable processes. The multi-loop PI controller designed by the proposed method shows a fast, well-balanced and robust response with the minimum integral absolute error (IAE) in compared with other renowned methods.

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.

A feature extraction algorithm for process planning

  • 박화규;김현;오치재;백종명;고영철
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.41-44
    • /
    • 1997
  • This paper is to provide an integration approach between design and process planning for mechanical parts, using feature recognition. We develop a method to extract each individual feature of an object from 3D modeling data using face-edge graph based algorithm and then propose an approach to recognize the volumic form features using heuristic rules. we demonstrate the proposed approaches are effective for such basic shapes as pocket, slot, through hole, etc.

  • PDF