• 제목/요약/키워드: systems approach

검색결과 9,966건 처리시간 0.028초

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

행렬 부등식 접근법을 이용한 비선형 시스템의 측정 피드백 제어 (Measurement Feedback Control of a Class of Nonlinear Systems via Matrix Inequality Approach)

  • 구민성;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.631-634
    • /
    • 2014
  • We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities.

DEVELOPING A STRUCTURED APPROACH WITH SYSTEMS ENGINEERING TO THE BUILDING DESIGN

  • Azzedine Yahiaoui
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.356-365
    • /
    • 2007
  • The development in the design process is usually based on the choice of a method for designing the system, in which this method is frequently faced with tightening environmental requirements, reducing development cycle times and growing complexity. To tackle such factors, the paper proposes a comprehensive approach focusing on applying systems engineering approach to the building design support. In particular, this paper addresses all capabilities of using some available systems engineering standards (like EIA-632) in the design process. Then, a methodological approach is proposed for the practice of requirements engineering by applying quality assessment and control to design in early phase. The paradigm used, here is to extend and particularly to adapt the work carried out in military and space systems to modern building services by taking into account the semantics of buildings in terms of different engineering fields and architecture issues.

  • PDF

Needs for Changing Accident Investigation from Blaming to Systems Approach

  • Kee, Dohyung
    • 대한인간공학회지
    • /
    • 제35권3호
    • /
    • pp.143-153
    • /
    • 2016
  • Objective: The purposes of this study are to survey needs for changing accident investigation from blaming to systems approach and to briefly summarize systems-based accident analysis techniques. Background: In modern complex socio-technical systems, accidents are caused by a variety of contributing factors including human, technical, organizational, social factors, not by just a single violation or error of a specific actor, but accidents investigation used to be focused on the incorrect action of individuals. A new approach investigating causes of accidents as a symptom of a deficient system is required. Method: This study was mainly based on survey of literatures related to accidents, accidents investigation, which included academic journals, newspapers, etc. Results: This study showed that accidents investigation of Korea focusing on blaming is problematic. This was confirmed by two concepts of migration and hindsight bias frequently found in accident causation studies, and an attribute of accidents having varying causes. This was illustrated with an example of Sewol ferry capsizing accident. Representative systems-based accident analysis models including Swiss cheese model, AcciMap, HFACS, FRAM and STAMP were briefly introduced, which can be used in systematic accidents investigations. Finally, this study proposed a procedure for establishing preventive measures of accidents, which was composed of two steps: public inquiry and devising preventive measures. Conclusion: A new approach considering how safety-critical components such as technical and social elements, and their interactions lead to accidents is needed for preventing reoccurrence of similar accidents in complex socio-technical systems. Application: The results would be used as a reference or guideline when the safety relevant governmental organizations investigate accidents.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

혁신체제론의 진화 및 주요 논점 (The Evolution of the Systems of Innovation Approach: A Review of the Main Issues)

  • 구영우;조성복;민완기
    • 기술혁신학회지
    • /
    • 제15권2호
    • /
    • pp.225-241
    • /
    • 2012
  • 본 연구는 국내 혁신체제론 연구를 진전시키기 위해 혁신체제론의 진화과정 및 주요 논점을 정리한 것이다. 혁신체제론은 신고전학파의 거시경제정책을 극복하기 위해 등장한 국가혁신체제론에서 비롯되었다. 그러나 국가혁신체제론은 분석단위의 부적합, 동태적 분석의 미흡, 제도적 결정론의 한계, 이론적 엄밀성의 부족 등의 다양한 비판에 직면하게 되었다. 이러한 비판들에 대한 대응으로서 혁신체제론 내에서는 기술체제론, 지역혁신체제론, 산업혁신체제론이 등장했다. 기술체제론, 지역혁신체제론, 산업혁신체제론은 제각각 기술 지역 산업으로 분석단위를 다양화하고, 동태적 분석을 모색하고, 제도 외에도 기업 분석을 중시함으로써 국가혁신체제론에 내재된 문제점을 해결하고자 했다. 이 과정에서 국가혁신체제론, 기술체제론, 지역혁신체제론, 산업혁신체제론의 상호보완성이 인정되면서 이들의 논의를 통합화하려는 노력이 전개되고 있다. 다양한 혁신체제론의 등장에도 불구하고 아직도 혁신체제론 비판이 완전히 해소된 것은 아니다. 그러나 다양한 혁신체제론의 상호보완적 발전은 혁신체제론의 이론적 및 정책적 유용성을 확대시켜 나갈수 있을 것이다.

  • PDF

비선형 시스템의 상태변수 추정기법 동향 (A Survey on State Estimation of Nonlinear Systems)

  • 장홍;최수항;이재형
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.277-288
    • /
    • 2014
  • This article reviews various state estimation methods for nonlinear systems, particularly with a perspective of a process control engineer. Nonlinear state estimation methods can be classified into the following two categories: stochastic approaches and deterministic approaches. The current review compares the Bayesian approach, which is mainly a stochastic approach, and the MHE (Moving Horizon Estimation) approach, which is mainly a deterministic approach. Though both methods are reviewed, emphasis is given to the latter as it is particularly well-suited to highly nonlinear systems with slow sampling rates, which are common in chemical process applications. Recent developments in underlying theories and supporting numerical algorithms for MHE are reviewed. Thanks to these developments, applications to large-scale and complex chemical processes are beginning to show up but they are still limited at this point owing to the high numerical complexity of the method.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

Fatigue Analysis of 306K Crude Oil Tanker Based on MSC Fatigue

  • Guo, Wei;Bae, Dong-Myung;Cao, Bo;Qi, Da-Long
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.463-469
    • /
    • 2015
  • Fatigue in the metal used as hull material has always been an important issue. The fatigue phenomenongenerally occurs suddenly in a ship hull, and always causesa large number of casualties and economic losses. This paper presents a study of an assessment method for the fatigue life based on Li’s approach using MSC Fatigue. The details of Li’s approach based on MSC Fatigue are provided. Based on the results of this study, it can be concluded that Li’s approach has several advantages: (1) it allows the wide application of different structural details, (2) is easy to use, and (3) provides accurate results. Finally, Li’s approach can be proven to be feasible for a ship’s fatigue analysis.