• 제목/요약/키워드: system-wide expression

검색결과 117건 처리시간 0.022초

Long noncoding RNA involvement in cancer

  • Maruyama, Reo;Suzuki, Hiromu
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.604-611
    • /
    • 2012
  • Recent advances in genome and transcriptome analysis have enabled identification of numerous members of a new class of noncoding RNA, long noncoding RNA (lncRNA). lncRNAs are broadly defined as RNA molecules greater than 200 nt in length and lacking an open reading frame. Recent studies provide evidence that lncRNAs play central roles in a wide range of cellular processes through interaction with key component proteins in the gene regulatory system, and that alteration of their cell- or tissue-specific expression and/or their primary or secondary structures is thought to promote cell proliferation, invasion and metastasis. The biological and molecular characteristics of the large majority of lncRNAs remains unknown, and it is anticipated that improved understanding of the roles played by lncRNAs in cancer will lead to the development of novel biomarkers and effective therapeutic strategies.

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

영상 인식자를 위한 선형 엔트로피 기반 방법론 (Noble Approach of Linear Entropy based Image Identification)

  • 박제호
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.31-35
    • /
    • 2019
  • Human beings have been fascinated by the applicability of the medium of photography since the device was first introduced in the thirteenth century to acquire images by attempting primitive and rudimentary approaches. In the 21st century, it has been developed as a wide range of technology that enables not only the application of artistic expression as a method of replacing the human-hand-painted screen but also the planar recording form in the format of video or image. It is more effective to use the information extracted from the image data rather than to use a randomly given file name in order to provide a variety of services in the offline or online system. When extracting an identifier from a region of an image, high cost cannot be avoided. This paper discusses the image entropy-based approach and proposes a linear methodology to measure the image entropy in an effort to devise a solution to this method.

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization

  • Zhang, Kang;Tan, Ruiting;Yao, Dongbang;Su, Lingqia;Xia, Yongmei;Wu, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.570-583
    • /
    • 2021
  • Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100℃), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90℃ for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.

Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize

  • Song, Kitae;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Kim, Jae Yoon;Lee, Sang-Kyu;Lee, Byung-Moo
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.354-362
    • /
    • 2018
  • Maize has high food and industrial value, whereas has difficulties in research because of their complex and huge size genome. Nested association mapping (NAM) was constructed to better understand maize genetics. However, most studies were conducted using the reference genome B73, and only a few studies were conducted on tropical maize. Ki3, one of the founder lines of the NAM population, is a tropical maize. We analyzed the genetic characteristics of Ki3 by using RNA sequencing and bioinformatics tools for various genetic studies. As results, a total of 30,526 genes were expressed, and expression profile were constructed. A total of 1,558 genes were differentially expressed in response to drought stress, and 513 contigs of them come from de novo assemblies. In addition, high-density polymorphisms including 464,930 single nucleotide polymorphisms (SNPs), 21,872 multiple nucleotide polymorphisms (MNPs) and 93,313 insertions and deletions (InDels) were found compared to reference genome. Among them, 15.0 % of polymorphisms (87,838) were passed non-synonymous test which could alter amino acid sequences. The variants have 66,550 SNPs, 5,853 MNPs, and 14,801 InDels, also proportion of homozygous type was higher than heterozygous. These variants were found in a total of 15,643 genes. Of these genes, 637 genes were found as differentially expressed genes (DEGs) under drought stress. Our results provide a genome-wide analysis of differentially expressed genes and information of variants on expressed genes of tropical maize under drought stress. Further characterization of these changes in genetic regulation and genetic traits will be of great value for improvement of maize genetics.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

HepG2 cell에서 quercetin의 HO-1 발현을 통한 mitochondria의 생합성 유도 효과에 관한 연구 (Quercetin Induces Mitochondrial Biogenesis via HO-1 Expression in HepG2 Cell)

  • 강재구;장상철;이기승;김진희;정명수
    • 대한한의정보학회지
    • /
    • 제21권1호
    • /
    • pp.14-22
    • /
    • 2015
  • Flavonoids show diverse bioactivities, such as anti-oxidant, anti-cancer, anti-allergic, anti-inflammatory, and anti-viral. Quercetin is one of the flavonoids present in a wide range of plants, especially onions and consumed all over the world. Recently, it is known that quercetin induces mitochondrial biogenesis in vivo and in vitro. However, detail mechanism of these actions remains unknown. We investigated quercetin's effects on mitochondrial biogenesis in HepG2 cells, and determined the mechanisms involved. We found that quercetin treatment induced the expression of mitochondrial biogenesis activators, $PGC-1{\alpha}$, NRF-1, TFAM, and mitochondrial proteins, cytochorome c and complex IV (COXIV). Moreover, amount of mitochondrial DNA was also increased by quercetin. Quercetin has been known to induce heme oxygenase (HO)-1 in several types of cells. Here, we found quercetin induces HO-1, and inhibition of HO-1 or CO, which is product of HO-1, decreased quercetin-induced mitochondrial biogenesis such as induction of $PGC-1{\alpha}$, NRF-1, TFAM, cytochorome c, COXIV, and mitochondrial DNA. These findings imply that quercetin can increase mitochondrial biogenesis via HO-1/CO system. High glucose results in dysfunction of mitochondria biogenesis. In the present study, 25 mM glucose decreased mitochondrial biogenesis and this damage was restored by quercetin. Conversely, inhibition of HO-1 or CO inhibited quercetin-induced mitochondrial biogenesis rescue. These results suggest that quercetin enhances mitochondrial biogenesis via HO-1/CO system and hence, can rescue mitochondria from damage by high glucose.

  • PDF