• 제목/요약/키워드: system to system method

검색결과 62,538건 처리시간 0.078초

시스템동정의 ALS법에 관한 연구 (A Study on the ALS Method of System Identification)

  • 이동철
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.74-81
    • /
    • 2003
  • A system identification is to estimate the mathematical model on the base of input output data and to measure the output in the presence of adequate input for the controlled system. In the traditional system control field, most identification problems have been thought as estimating the unknown modeling parameters on the assumption that the model structures are fixed. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input output case with the observed noise. We suggest the adjusted least squares method as a consistent estimation method in the system identification in the case where there is observed noise only in the output. In this paper the adjusted least squares method has been developed from the least squares method and the efficiency of the estimating results was confirmed by the generating data with the computer simulations.

  • PDF

객체지향기법을 적용한 PSS 설계에 관한 연구 (A Study on the Power System Stabilizer Design using Object-Oriented Method)

  • 박지호;백영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.671-677
    • /
    • 1999
  • In this paper, we have designed power system stabilizer (PSS) using object-oriented method. There are several types of power system stabilizer. A proportional-integral(PI) controller is very simple for practical implementation. Therefore it has been widely employed by the industry. The methods of obtaining the gains(Ki,Kp) of PI controller are root-locus method and sub-optimal regulator approach. But these methods are cannot be applicable to nonlinear system and faulted power system. So we proposed a new method which can be applied to nonlinear system by numerical analysis method. The method of dynamic system simulation by numerical method is very difficult and complex. We proposed flexible simultaion method for complex power system analysis using object-oriented programming(OOP) and applied to PI controller design.

  • PDF

A Design of the Improved Data Conversion Process for System Upgrade Project

  • Kim, Hee Wan
    • International journal of advanced smart convergence
    • /
    • 제10권2호
    • /
    • pp.187-193
    • /
    • 2021
  • Data conversion refers to the process of extracting the data existing in the existing system, that is, the past data accumulated by the old information system or other methods and transferring it to the improved table of the new system. The person in charge of data conversion refers to the entire process of converting to the final destination table according to the rules designed/planned in advance. In most cases, data conversion design should be consider when the old system replace or the data of another existing system is converted and applied to a newly constructed information system. The goal of data conversion is to understand the current database system of operating environment, understand the characteristics of the DBMS in use, maintain the optimal database structure, and make the new system perform at its best. Data conversion methods are largely divide into a method using a tool and a conversion method using a program preparation. In this paper, we examine the advantages and disadvantages of the data conversion method, and try to derive the problems of the existing data conversion method. Based on this, an improved data conversion method for the system upgrade project was proposed, and verified through a questionnaire of an IT expert to prove its effectiveness

확장 T-method에 의한 환상식 덕트시스템 해석 (Analysis of loop duct system by extended T-method)

  • 이승철;문종선;이재헌
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.389-397
    • /
    • 1998
  • A loop duct system is often found in a VAV-HVAC(variable air volume heating, ventilating and air conditioning) design. It is known that the simple T-method is not be applicable to the loop duct system and cannot be used to calculate the flow rate and the pressure drop at each duct section of the loop duct system. In this paper, the extended T-method has been developed and it is found to be applicable to the loop duct system to which the simple T-method cannot be applied. The validity of the extended T-method has been verified by using to solve for a simple, ideal loop duct system for which there exists analytical solution. In addition, the extended T-method is employed to compute the loop duct system of a real building with an area of 380$m^2$. The results show that the computed flow rate at the exit differs from the designed flow rate by a range of -13.6~43.5 %. Consequently, three design factors must be adjusted in order that the flow rate may be balanced. These include the duct sizes, in terms of their lengths and diameters, the sub-duct locations and the positioning of damper which is found upstream of the exit duct.

  • PDF

Well-being 평가기법을 이용한 전력시스템의 신뢰도평가 및 송전용량 계산 (Reliability Assessment and Transmission Capability Calculation in Power System using Well-being Method)

  • 손현일;배인수;김진오
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.841-846
    • /
    • 2010
  • Reliability in electrical power system refers to normal operation for schedule time in some system that action consists. It means that if there is no contingency of electric power supply decrease or load curtailment, reliability of the system is high. In this paper, a method for evaluation of transmission capability is proposed considering reliability standards. Deterministic and probabilistic methods for evaluation of transmission capability has been studied. These researches considered uncertainty of system components or N-1 contingency only. However, the proposed method can inform customers and system operators more suitable transmission capability. Well-being method using state probabilities of system components proves to be a more effective method in this paper comparing with calculation of LOLE(Loss of Load Expectation). The length of calculation is shorter but it can give more practical information to the exact system operators. Well-being method is applied to IEEE-RTS 24bus system to evaluate reliability in case study. The result is compared with a existing way to evaluate reliability with LOLE and it shows that transmission capability connected with adjacent networks. This paper informs system operators and power suppliers of reliable information for operating power system.

자율분산 역 제어시스템 단계적 구축에 따른 테스트 방법 (Test method for step-by-step construction of Autonomous station control system)

  • 김영훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1239-1243
    • /
    • 2007
  • Autonomous Station Control System is automatic route control system of large-scale station. The system has flexibility of system step-by-step construction and expandability. A method of step-by-step construction for Autonomous Station Control System has system expansion and subsystem software expansion. The system has autonomous controllability and autonomous coordinability for system step by step construction. With property for a basis, each of subsystem communicates data field. Also, Each subsystem has its own management system, Autonomous Data Manager to manage itself and coordinate with the others. This paper make clear test method for Autonomous Station Control System expansion and software expansion. The first test method of system increasing construction is single station construction test. The second of method is connecting test the neighbor's Autonomous Station Control System. The third of method is connecting test the Autonomous Line Management System. Also, the test method of software expansion take the case of route control subsystem.

  • PDF

DFT 기반의 시스템 모델링을 이용한 DC Motor의 위치제어 (The Position Control of DC Motor using the System Modeling based on the DFT)

  • 안현진;심관식;임영철;남해곤;김광헌;김의선
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.542-548
    • /
    • 2012
  • This study presents a new method of system modeling by using the Discrete Fourier Transform for the position control system of DC Motor. And the proposed method is similar to the method of System Identification by analysis of correlation of the measured input-output data. The measured output signals are transformed to the frequency domain using DFT. The Fourier Spectrum of the transformed signals is used for knowing to the feature of having an important effect on the system. And transfer function of the second order system is estimated by the dominant parameter which is computed in the magnitude and the phase of Fourier spectrum of the transformed signals. In addition, the output signal includes the unique feature of system. So, although the basic parameter of the system is unknown for us, the proposed method has an advantage to system modeling. And the controller is easily designed by the estimated transfer function. Thus, in this paper, the proposed method is applied to the system modeling for the position control system of DC Motor and the PD-controller is designed by the estimated model. And the efficiency and the reliability of the proposed method are verified by the experimental result.

비접지 계통에서 영상전류 위상을 이용한 개선된 보호협조 방안 (The Advanced Protection Coordination Scheme using Phase Angle of Zero-Sequence Current in Ungrounded System)

  • 최영준;임희택;최면송;이승재
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.19-25
    • /
    • 2010
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. The protection coordination method using SGR(Selective Ground Relay) and OVGR(Overvoltage Ground Relay) is generally used in ungrounded system. But this method only detects fault line and it has the possibility of malfunction. This paper proposed to advanced protection coordination method in ungrounded system. The method just using zero-sequence current can detect fault line, fault phase, fault section at terminal device. The general protection method is used to back up protection. In the case study, the proposed method has been testified in demo system by Matlab/Simulink simulations.

Aggregation of Measures of Effectiveness with Constant Sum Scaling Method and Multiple Regression

  • Kim, Hyung-Bae
    • 한국국방경영분석학회지
    • /
    • 제5권2호
    • /
    • pp.27-38
    • /
    • 1979
  • This method explores a method of aggregating the measures of effectiveness of a weapon system from its characteristics. With this method, the constant sum method and multiple regression are used to develop a functional relationship between system effectiveness and system characteristics. As an example, a study of a tank weapon system was${\cdot}$conducted with data from the U.S. Army Armor School. It was concluded that the aggregation method is feasible, and that for the tank system studied, the reciprocals of system characteristics give a good estimating equation for measuring tank system effectiveness.

  • PDF

Identification of Motion Platform Using the Signal Compression Method with Pre-Processor and Its Application to Siding Mode Control

  • Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1379-1394
    • /
    • 2002
  • In case of a single input single output (SISO) system with a nonlinear term, a signal compression method is useful to identify a system because the equivalent impulse response of linear part from the system can be extracted by the method. However even though the signal compression method is useful to estimate uncertain parameters of the system, the method cannot be directly applied to a unique system with hysteresis characteristics because it cannot estimate all of the two different dynamic properties according to its motion direction. This paper proposes a signal compression method with a pre-processor to identify a unique system with two different dynamics according to its motion direction. The pre-processor plays a role of separating expansion and retraction properties from the system with hysteresis characteristics. For evaluating performance of the proposed approach, a simulation to estimate the assumed unknown parameters for an arbitrary known model is carried out. A motion platform with several single-rod cylinders is a representative unique system with two different dynamics, because each single-rod cylinder has expansion and retraction dynamic properties according to its motion direction. The nominal constant parameters of the motion platform are experimentally identified by using the proposed method. As its application, the identified parameters are applied to a design of a sliding mode controller for the simulator.