• Title/Summary/Keyword: system engineering

Search Result 100,364, Processing Time 0.085 seconds

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.

Performance Analysis of Ejector-Pump Thermal Energy Conversion System Using Various Working Fluids (이젝터-펌프 온도차발전시스템의 작동유체별 성능분석)

  • Yoon, Jung-In;Seol, Sung-Hoon;Son, Chang-Hyo;Choi, Kwang-Hwan;Kim, Young-Bok;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.87-92
    • /
    • 2016
  • This research dealt with performance characteristics of OTEC system applying an ejector and additional pump. Each system using five kinds of working fluids was analyzed, and primary parameters with respect to entrainment ratio were examined: Turbine gross power, evaporation capacity, pump work, efficiency and volume flow ratio. The primary results were as following. The efficiency of ejector-pump OTEC system was dependent on entrainment of the ejector. The degree of efficiency change was different from applied working fluid, and amount of pump work was turned out to be primary factor affected system efficiency. Meanwhile, optimized entrainment ratio was different from applied working fluid since their different vapor density. System efficiency at optimized entrainmet ratio of each working fluid was around 5%, showing minor difference each other.

RAM Target Value Setting for a Defense System Using Subsystems' Mission Profiles and Utilization Rates: Case Study of System A (부체계의 임무 프로파일 및 운용 비율을 고려한 무기체계의 RAM 목표값 설정: A체계 사례 연구)

  • In-Hwa Bae;Sang-Boo Kim;Jea-Woo You;Woo-Jae Park;Eun-Ji You;Min-Young Lee;Ki-Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.885-894
    • /
    • 2023
  • Setting RAM target value for a defense system plays a crucial role in the development and design phases and the production phase as well. It is apparent that the achieved RAM target value can help maximizing the combat capability of a defense system and improving its performance throughout the system's life cycle from acquisition phase to disposal. Usually a defense system operates according to its OMS/MP (Operational Mode Summary / Mission Profile) and it consists of several subsystems which are supposed to be operated at each utilization rate under its operating conditions and the mission profiles assigned. In this study, a method of setting RAM target value is proposed for a defense system that are composed of several independent subsystems considering their utilization rates and the mission profiles assigned. And the case study of applying the proposed method of setting RAM target value to system A is dealt with.

Design and Implementation of the Gateway for Remote Monitoring a Combine (콤바인 원격 모니터링을 위한 게이트웨이 설계 및 개발)

  • Moon, Y.K.;Song, Y.H.;Shin, K.Y.;Lee, S.S.;Choi, C.H.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.197-205
    • /
    • 2007
  • The objective of this study was to design and implement a gateway for remote monitoring a combine. Many researchers have designed and implemented trouble-shooting system of agricultural machine. but the system didn't have network system or used wired network system. But monitoring machine have been operated in the out of door. In such an environment, each machine have to be operated under on a guarantee of mobility and stability. Thus, we have developed a gateway with an embedded system including the XScale PXA255 processor and wireless network device. We have also built an embedded Linux kernel and several devices. We developed an embedded application for monitoring a combine and this application is also capable of receiving signals from other clients and sending them to a server via Wireless LAN. Finally, results of performance evaluation which measured CPU share and memory sizes have shown that it is possible to provide monitoring service stably.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Ubiquitous intelligent lesson management system (유비쿼터스 지능형 교육관리 시스템)

  • Hong, Sung-Moon;Oh, Suk-Kyung;Lim, Hyung-Min;Cho, Jae-Min;Kim, Dong-Suk;Park, Sang-Gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.739-742
    • /
    • 2011
  • This paper describes system design and realization to the ubiquitous intelligent lesson management. This system includes students management by utilizing RFID and web-cam, personal security certification by fingerprint recognition, keyboard locking of PC by hooking technology, personal data management by cloud system, internet block access by a packet monitoring. We have design and realize this system, In the future, we will applicate our system to the classes using computer.

  • PDF

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

Development of PV/T for Performance Improvement of Photovoltaic System (태양광 발전의 성능향상을 위한 PV/T 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Mun, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.95-96
    • /
    • 2010
  • This paper proposes photovoltaic thermal hybrid module to get the electrical and Thermal performance of building integrated photovoltaic(BIPV) system. BIPV system is decreased the system efficiency because output of PV is decreased by the thermal rising on generating. In order to improve the efficiency of BIPV module, water cooling system is applied and generated thermal is used the warm water system. Water cooling system uses the flux control algorithm considering water temperature and power loss. Electrical and thermal performance of proposed photovoltaic thermal hybrid module is confirmed through the actual experiment and herby proved the valid of this paper.

  • PDF

Effect of Slurry Flow in Spray Slurry Nozzle System on Cu CMP (스프레이 슬러리 노즐 시스템에서 슬러리 유동이 Cu CMP에 미치는 영향)

  • Lee, Da Sol;Jeong, Seon Ho;Lee, Jong Woo;Jeong, Jin Yeop;Jeong, Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • The chemical mechanical planarization (CMP) process combines the chemical effect of slurry with the mechanical effect of abrasive (slurry)-wafer-pads The slurry delivery system has a notable effect on polishing results, because the slurry distribution is changed by the supply method. Thus, the investigation of slurry pumps and nozzles with regard to the slurry delivery system becomes important. This paper investigated the effect of a centrifugal slurry pump on a spray nozzle system in terms of uniform slurry supply under a rotating copper (Cu) wafer, based on experimental results and computational fluid dynamics (CFD). In conventional tools, the slurry is unevenly and discontinuously supplied to the pad, due to a pulsed flow caused by the peristaltic pump and distributed in a narrow area by the tube nozzle. Adopting the proposed slurry delivery system provides a higher uniformity and lowered shear stress than usual methods. Therefore, the newly developed slurry delivery system can improve the CMP performance.

Analysis on Application Plan of Factorial Design in Relation to Responses for Electronically-controlled Diesel Engine (전자제어식 디젤엔진에 있어서 반응치에 따른 요인배치법의 활용 방안에 대한 분석)

  • Lee, Jung-Gyu;Kim, Min-Jong;Koh, Sung-Wi;Yang, Ju-Ho;Han, Kyu-Il;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2018
  • In order to employ factorial design on electronically-controlled diesel engine, effects of 5 factors on specific fuel consumption, nitrogen oxides and carbon monoxide were examined by fractional and full factorial design in this research. There were different results between fractional and full factorial design, then effect of variables as ambient condition and measurement of fuel consumption were confirmed. It was shown that ambient condition affected uniformly trend of nitrogen oxides and carbon monoxide. However, both ambient condition and measurement of fuel consumption had nothing to do with trend of specific fuel consumption and therefore it must be careful to employ factorial design on specific fuel consumption as response.