• Title/Summary/Keyword: synthesis of natural product

Search Result 123, Processing Time 0.029 seconds

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Solution-Phase Strategies for the Design, Synthesis, and Screening of Libraries Based on Natural Products

  • Kim, Sang-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.88-88
    • /
    • 2003
  • The syntheses of different types of stilbenoid libraries have been studied recently. In these courses, the screening of the generated natural product-mimic focused libraries led to the identification of the novel lead compounds for human cytochrome P450 (CYP) lAs, melanin production, and sortase A. A library of trans-stilbene derivatives was prepared through a new efficient solution pahse synthetic pathway and their inhibitory activities were evaluated on human cytochrome P450s(CYP) 1A1, 1A2, and 1B1 to find a potent and selective CYP1 inhibitor. (omitted)

  • PDF

Synthesis and Biological Activity of Fungal Metabolite, 4-Hydroxy-3-(3'-Methyl-2'-Butenyl)-Benzoic Acid

  • Kim, Hye-Jin;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.543-545
    • /
    • 2007
  • 4-Hydroxy-3-(3'-methyl-2'-butenyl)-benzoic acid (HMBA) was previously isolated from Curvularia sp. KF119 as a cell-cycle inhibitor. However, the present study used a novel and practical synthetic method to prepare a large quantity of HMBA. The synthetic HMBA was found to inhibit the cell-cycle progression of HeLa cells with a comparable potency to the natural fungal metabolite. The inhibition of the cell-cycle progression by the synthetic HMBA involved both the activation of $p21^{WAF1}$ and the inhibition of cyclin D1 expression in the cells. Consequently, this new synthetic procedure provides an easy and convenient way to produce or manipulate the original fungal metabolite.

Synthesis of $^3H$-Labeled dammarane triterpene glycosides of Korean ginseng

  • Han, Byung-Hoon;Woo, Lin-Keun
    • Archives of Pharmacal Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1978
  • A procedure of $^3H$-radio labeling synthesis for the dammarane triterpene glycosides of Korean ginseng was established by using the ginsenoside $Rg_1$ as starting material. The protons in $C-{11}$ and $C_{13}$ of the aglycone moiety of the glycoside were exchanged with tritium by keto-enol tautomerization of 12-keto-ginsenoside $Rg_1$ which was prepared by partial acetylation, Sarett oxidation and saponification, producing nona-acetate, nonaside $Rg_1$. The acety1-ketone and 12-keto-derivative of ginsenotritated ketone was reduced by metallic sodium and isoproponol to produce the end product $^3H$-ginsenoside $Rg_1$ with 3% radio-chemical recovery in one experiment.

  • PDF

Synthesis of Flavokawain B and its Anti-proliferative Activity Against Gefitinib-resistant Non-small Cell Lung Cancer (NSCLC)

  • Seo, Young Ho;Oh, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3782-3786
    • /
    • 2013
  • Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and that accounts for 85% of lung cancer patients. Although several EGFR-targeted drugs have been developed in the treatment of NSCLC, the clinical efficacy of EGFR-targeted drugs in NSCLC is limited by the occurrence of drug resistance. In this regard, Hsp90 represents great promise as a therapeutic target of cancer due to its potential to simultaneously disable multiple signaling pathways. In this study, we discovered that a natural product, flavokawain B disrupted Hsp90 chaperoning function and impaired the growth of gefitinib-resistant non-small cell lung cancer (H1975). The result suggested that flavokawain B could serve as a potential lead compound to overcome the drug resistance in cancer chemotherapy.

Synthesis of Substituted Cinnamoyl-tyramine Derivatives and their platelet Anti-aggregatory Activities

  • Woo, Nam-Tae;Jin, Sun-Yong;Cho, Jin-Cho;Kim, Nam-Sun;Bae, Bae-Eun-Hyung;Han, Ducky;Han, Byung-Hoon;Kang, Young-Hwa
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.80-84
    • /
    • 1997
  • Substituted cinnamoyl-tyramine derivatives were synthesized by DCC-coupling of substituted cinnamic acid with tyramine or tyramine methyl-1-ether to evaluate PAF-receptor binding antagonistic activities and inhibitory activities on PAF-induced platelet aggregation with interest on structure-activity relations. The results show that 3,4-dimethoxy-cinnamoyl tyramine-amide or its methyl ether have significant PAF-receptor binding antagonistic activity and platelet anti-aggregatory activities.

  • PDF

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.

The Chemical Syntheses of C-Nucleosides (C-뉴크레오사이드의 화학합성)

  • Chun, Moon-Woo;Kim, Joong-Hyup;Watanabe, Kyoichi A.
    • YAKHAK HOEJI
    • /
    • v.35 no.6
    • /
    • pp.530-554
    • /
    • 1991
  • The synthetic methodologies for the preparation of C-nucleosides are divided into four categories, and each category is discussed in details. The chemical rections which lead to other C-nucleosides from preformed the natural product pseudouridine are described first, followed by synthesis of C-nucleosides by condensation of pre-formed heterocyclic base with sugar, and by construction of heterocyclic base from a carbohydrate intermediate that bear functional carbon fragment at the anomeric position. Finally, methods of total synthesis of C-nucleosides from carbohydrate and achiral starting materials are presented.

  • PDF

Synthesis of Silica using Silk Sericin without Hydrolysis of Tetraethyl Orthosilicate

  • Lee, Ji Young;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.298-302
    • /
    • 2013
  • In this study, the effect of sericin on synthesis of the silica was investigated. Using the mixture of sericin solution and tetraethyl orthosilicate (TEOS), it was confirmed that silica could be synthesized in the presence of sericin, which was verified by thermal gravimetric analysis (TGA), Fourier-transformed infrared spectrometer (FT-IR) and nuclear magnetic resonance spectrometer (NMR) analysis. The TGA and FT-IR data revealed that silica-sericin complex was formed as a final product. Based on the TGA result, the content of silica and sericin in the complex would be 87 and 13%, respectively. The degree of silica condensation was higher than the natural biosilica. It could be concluded that sericin can induce the synthesis of silica directly from TEOS, which is similar to silicatein from marine sponges.