Browse > Article
http://dx.doi.org/10.4014/jmb.1807.07043

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli  

Choi, Gyu Sik (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Hyeon Jeong (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Eun Ji (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Lee, Su Jin (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Lee, Youngshim (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.11, 2018 , pp. 1859-1864 More about this Journal
Abstract
Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.
Keywords
Bioconversion; flavonoid glycosides; glycosyltransferase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jones P, Vogt T. 2001. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164-174.   DOI
2 Osmani SA, B ak S , M?ller BL. 2 009. Substrate specif icity of plant UDP-dependent glycosyltransferase predicted from crystal structures and homology modeling. Phytochemitsry 70: 325-347.   DOI
3 Panche AN, Diwan AB, Chandra SR. 2016. Flavonoids: an overview. J. Nutr. Sci. 5: e47.   DOI
4 Veitch NC, Grayer RJ. 2011. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 28: 1626-1695.   DOI
5 Kim BG, Yang SM, Kim SY, Cha MN, Ahn J-H. 2015. Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl. Microbiol. Biotechnol. 99: 2979-2988.   DOI
6 Han S-I, Lee J, Kim MS, Chung SJ, Kim J-H. 2017. Molecular cloning and characterization of a flavonoid glucosyltransferase from Byungkyool (Citrus platymamma hort. ex Tanaka). Appl. Biol. Chem. 60: 49-55.
7 Bowles D, Isayenkova J, Lim EK, Poppenberger B. 2005. Glycosyltransferases: managers of small molecules. Curr. Opin. Plant Biol. 8: 254-263.   DOI
8 Cho AR, An DG, Lee Y, Ahn J-H. 2016. Biotransformation of quercetin to quercetin 3-O-gentiobioside using engineered Escherichia coli. Appl. Biol. Chem. 59: 689-693.   DOI
9 Han SH, Kim B-G, Yoon JA, Chong Y, Ahn J-H. 2014. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering nucleotide sugar synthesis pathway and glycosyltransferase. Appl. Env. Microbiol. 80: 2754-2762.   DOI
10 Pabst M, Grass J, Fischl, R, Leonard R, Jin C, Hinterkorner G, et al. 2010. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal. Chem. 82: 9782-9788.   DOI
11 Kim BG, Kim HJ, Ahn J-H. 2012. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J. Agr. Food Chem. 60: 11143-11148.   DOI
12 Kim HJ, Kim BG, Ahn J-H. 2013. Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Appl. Microbiol. Biotechnol. 97: 5275-5282.   DOI
13 Choi HJ, Kim JH, Lee CH, Ahn YJ, Song JH, Baek SH, et al. 2009. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Res. 81: 77-81.   DOI
14 Song JH, Shim JK, Choi HJ. 2011. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol. J. 8: 460.   DOI
15 Kim SY, Lee HR, Park K-s, Kim BG, Ahn J-H. 2015. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid O-glucuronides and flavonoid O-galactoside. Appl. Microbiol. Biotechnol. 99: 2233-2242.   DOI
16 Sim GY, Yang SM, Kim BG, Ahn J-H. 2015. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb. Cell Fact. 14: 162.   DOI
17 Urgaonkar S, Shaw JT. 2007. Synthesis of kaempferitrin. J. Org. Chem. 72: 4582-4585   DOI
18 Kim B-G, Sung SH, Ahn J-H. 2012. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Appl. Microbiol. Biotechnol. 93: 2447-2453.   DOI
19 Yang Y, Sun J, Yang Z, Han W, Zhang W-D, Yu B. 2012. Efficient synthesis of kaempferol 3,7-O-bisglycosides via successive glycosylation with glycosyl ortho-alkynylbenzoates and trifluoroacetimidates. Tetrahedron Lett. 53: 2773-2776.   DOI
20 Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, et al. 2017. Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8: e00621-17.