• Title/Summary/Keyword: synthesis gas

Search Result 866, Processing Time 0.031 seconds

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis (수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가)

  • Jeong, Jun-Kyo;Yun, Ho-Jin;Yang, Seung-Dong;Park, Jeong-Hyun;Kim, Hyo-Jin;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

Porous Ceramic Fibers: Materials and Applications

  • Kim, Il-Du
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.4-4
    • /
    • 2011
  • Extensive research efforts are directed toward the development of highly sensitive gas sensors using novel nanostructured materials. Among the different strategies for producing sensor devices based on nanosized building blocks, polymeric fiber templating approach which is combined by chemical and physical synthesis routes was attracted much attention. This unique morphology increases the surface area and reduces the interfacial area between film and substrate. Consequently, the surface activity is markedly enhanced while deleterious interfacial effects between film and substrate are significantly reduced. Both effects are highly advantageous for gas sensing applications. In this presentation, facile synthesis of hollow and porous metal oxide nanostructures and their applications in chemical sensors will be discussed.

  • PDF

Studies on the Sensing Charcteristics of Carbon-monoxide Using the Maghemite (Maghemite를 이용한 일산화탄소 감지 특성에 관한 연구)

  • 박영구
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.24-31
    • /
    • 1995
  • Gas sensing element, $\alpha-Fe_2O_3$ was synthesized by dehydration, reduction, and oxidation of $\alpha-FeOOH$, which was synthesized with $FeSO_4\cdot 7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of carbon monoxide were studied. The qualities of gas sefising elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH$ synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM,TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha-FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$ responded more quickly than the bulk-type did. The structure and the relative surface area of the $\rho-FeOOH$ were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park;Hyojin Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.

Development and efficiency evaluation of 30kW scale syngas cogeneration system (30kW 급 합성가스 열병합 시스템 개발 및 효율 성능평가)

  • Park, Il-Gun;Kim, Sang-Tae;Noh, Gwi-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1427-1433
    • /
    • 2019
  • In this paper, Gas engine was tested for the energy of synthesis gas. As excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 in 1800 rpm and synthesis gas, thermal efficiency generally decrease and power generation was 34 kWm at λ 1.4. And excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4 in power generation 34 kWm, thermal efficiency generally increase 34.2%, 36.9%, 37.2%, 37.4%, 38.1%. Total efficiency through power generation consumes 38.7 kg/h of fuel at 30 kWe load and recovers 57.3% of waste heat by recovering 57.3 kW of waste heat through 32.1% power generation efficiency and heat recovery from cooling water and exhaust gas. The total efficiency was 85.8%.

Electrostatic Charging and Substrate Seeding in Gas Phase Synthesis of Nanocrystalline Diamond Powder

  • Cho, Jung-Min;Lee, Hak-Joo;Choi, Heon-Jin;Lee, Wook-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.418-418
    • /
    • 2012
  • Synthesis of nanocrystalline diamond powder was investigated via a gas-to-particle scheme using the hot filament chemical vapor deposition. Effect of substrate surface seeding by nano diamond powder, and that of the electrical conductance of the substrate were studied. The substrate temperature, methane content in the precursor gas, filament-substrate distance and filament temperature were $670^{\circ}C$, 5% methane in hydrogen, 10 mm and $2400^{\circ}C$, respectively. The powder formation by gas-to-particle mechanism were greatly enhanced by the substrate seeding by the nano diamond powder. It was attributed to the removal of the electrostatic force between the substrate and the seeded nano diamond particle by the thermal electron shower from the hot filament, via the depolarization of the substrate surface or the attached diamond powder and subsequent levitation into the gas phase to serve as the gas-phase nucleation site. The powder formation was greatly favoured by the conducting substrate relative to the insulating substrate, which proved the actual effect of the electric static force in the powder formation.

  • PDF

Development of High Pressure Membrane-Based Associated Gas Separation System for DME Synthesis (DME 합성을 위한 고압 유휴가스 분리용 Membrane 시스템 개발)

  • Kim, Hackeun;Bae, Myongwon;Lee, Sangjin;Ha, Seongyong;Lee, Chungseop;Mo, Yonggi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • The objective of this study is to develop a gas pro-treatment system for DME synthesis, wherein this system separates $CO_2$ from Flaring gas as Membrane, in order to save raw material ($CH_4$) cost of DME. In this study, hollow fiber membrane is developed, which is able to separate high-pressure gas, supported by polysulfone and coated with amorphous fluorinated polymer. Throughout the evaluation of the membrane's separation characteristics, the membrane is applied to this system. The membrane is designed by 2 stages for over 90% removal rate of $CO_2$ and over 90% recovery rate of $CH_4$. The bench scale of pro-treatment system is developed as $25Nm^3/hr$.