DOI QR코드

DOI QR Code

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hyojin Kim (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2023.06.11
  • Accepted : 2023.08.23
  • Published : 2023.08.31

Abstract

Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B04030425).

References

  1. C. A. Grimes, E. C. Dickey, Encyclopedia of Sensors, M.V. Pishko, American Scientific Publishers, USA (2006).
  2. T. Seiyama, A. Kato, K. Fujishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, 34 (1962) 1502-1503. https://doi.org/10.1021/ac60191a001
  3. D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics, W. Gopel, Development of modular ozone system for application in practical use, Sensors and Actuators B: Chemical, 83 (2000) 1-9. https://doi.org/10.1016/S0924-4247(00)00302-2
  4. Y. Li, W. Wlodarski, K. Galatsis, S.H. Moslih, J. Cole, S. Russo, N. Rockelmann, Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films, Sensors and Actuators B: Chemical, 83 (2002) 160-163. https://doi.org/10.1016/S0925-4005(01)01031-0
  5. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein, H. Bottner, Gas response of reactively sputtered ZnO films on Si-based micro-array, Sensors and Actuators B: Chemical, 93 (2003) 435-441. https://doi.org/10.1016/S0925-4005(03)00170-9
  6. T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor application, Applied Physics A, 80 (2005) 1451-1454. https://doi.org/10.1007/s00339-004-3075-2
  7. C. Yang, X. Su, F, Xiao, J, Jian, J. Wang, Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method, Sensors and Actuators B: Chemical, 158 (2011) 299-303. https://doi.org/10.1016/j.snb.2011.06.024
  8. J. H. Park, H. Kim, Synthesis and characterization of zinc oxide nanorods for nitrogen dioxide gas detection, Journal of Korean Institute of Surface Engineering, 54 (2021) 260-266.
  9. D. S. Murali, S. Kumar, R. J. Choudhary, A.D. Wadikar, M. K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films, AIP Advances, 5 (2015) 047143.
  10. Y. Ushio, M. Miyayama, H. Yanagida, Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction, Sensors and Actuators B: Chemical, 17 (1994) 221-226. https://doi.org/10.1016/0925-4005(93)00878-3
  11. R. Poreddy. C. Engelbrekt, A. Risager, Copper oxide as efficient catalyst for oxidative dyhydrogenation of alcohols with air, Catalysis Science & Technology, 5 (2015) 2467-2477. https://doi.org/10.1039/C4CY01622J
  12. J. H. Park, H. Kim, Cupric oxide thin film as an efficient photocathode for photoelectrochemical water reduction, Journal of Surface Science and Engineering, 55 (2022) 63-69.
  13. C. Wang, X. Q. Fu, X. Y. Xue, Y. G. Wang, T. H. Wang, Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption, Nanotechnology, 18 (2007) 145506.
  14. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Advanced Materials, 15 (2003) 353-389. https://doi.org/10.1002/adma.200390087
  15. J. H. Park, H. Kim, Photoelectrochemical properties of a vertically aligned zinc oxide nanorod photoelectrode, Journal of Korean Institute of Surface Engineering, 51 (2018) 237-242. https://doi.org/10.5695/JKISE.2018.51.4.237
  16. N. L. Hung, H. Kim, S. K. Hong, D. Kim, Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots, Sensors and Actuators B: Chemical, 151 (2010) 127-132. https://doi.org/10.1016/j.snb.2010.09.036
  17. H. F. Goldstein, D. Kim, P. Y. Yu, L. C. Bourne, J. P. Chaminade, L. Nganga, Raman study of CuO single crystals, Physical Review B, 41 (1990) 7192-7194. https://doi.org/10.1103/PhysRevB.41.7192
  18. P. Sinsermsuksakui, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer A. S. Hock, R. G. Gordon, Atomic layer deposition of tin monosulfide thin films, Advanced Energy Materials, 1 (2011) 1116-1125. https://doi.org/10.1002/aenm.201100330
  19. S. C. Naisbitt, K. F. E. Partt, D. E. Williams, I. P. Parkin, A microstructural model of semiconducting sensor response: The effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide, Sensors and Actuators B: Chemical, 114 (2006) 969-977. https://doi.org/10.1016/j.snb.2005.07.058
  20. R. W. J. Scott, S. M. Yang. G. Chabanis, N. Coombs, D. E. Williams, G. A. Ozin, Tin dioxide opals and inverted opals: Near-ideal microstructures for gas sensors, Advanced Materials, 13 (2001) 1468-1472. https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  21. N. S. Ramgir, S. Kailasa Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, Sub-ppm H2S sensing at room temperature using CuO thin films, Sensors and Actuators B: Chemical, 151 (2010) 90-96. https://doi.org/10.1016/j.snb.2010.09.043